论文标题

平滑的嵌入式嵌入式认证的少量学习

Smoothed Embeddings for Certified Few-Shot Learning

论文作者

Pautov, Mikhail, Kuznetsova, Olesya, Tursynbek, Nurislam, Petiushko, Aleksandr, Oseledets, Ivan

论文摘要

随机平滑被认为是针对对抗性扰动的最先进的防御。但是,它很大程度上利用了这样一个事实,即分类器将输入对象映射到类概率,而不专注于学习度量空间,在该公路空间中,通过计算距离嵌入类原型的距离来执行分类。在这项工作中,我们将随机平滑性扩展到绘制到归一化嵌入的几片学习模型。我们提供了Lipschitz连续性的分析,并针对$ \ ell_2 $结合的扰动获得了鲁棒性证书,这些扰动可能在几次学习方案中很有用。我们的理论结果通过不同数据集的实验证实。

Randomized smoothing is considered to be the state-of-the-art provable defense against adversarial perturbations. However, it heavily exploits the fact that classifiers map input objects to class probabilities and do not focus on the ones that learn a metric space in which classification is performed by computing distances to embeddings of classes prototypes. In this work, we extend randomized smoothing to few-shot learning models that map inputs to normalized embeddings. We provide analysis of Lipschitz continuity of such models and derive robustness certificate against $\ell_2$-bounded perturbations that may be useful in few-shot learning scenarios. Our theoretical results are confirmed by experiments on different datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源