论文标题
扩散介导的表面反应和随机重置
Diffusion-mediated surface reactions and stochastic resetting
论文作者
论文摘要
在本文中,我们研究了随机重置对$ \ r^d \ backslash \ calu $扩散的影响,其中$ \ calu $是一个有界的障碍物,具有部分吸收的表面$ \ partial \ calu $。我们首先考虑具有恒定反应性$κ_0$的Robin边界条件,并显示如何在限制下恢复以前的结果$κ__0\ rightarrow 0,\ infty $。然后,我们使用基于遭遇的方法将罗宾边界条件推广到扩散介导的表面反应的更通用的概率模型。后者认为,在完美反射表面的情况下,将对$ $ \ x_t $和$ \ ell_t $表示粒子位置和当地时间的联合概率密度或传播器$ P(\ x,\ ell,\ ell,\ ell,t | \ x_0)$用于$ $(\ x_t,\ ell_t)$。当地时间确定了布朗粒子在边界附近花费的时间。然后,通过适当的停止条件在边界局部时间通过适当的停止条件合并表面反应的效果。我们在存在重置的情况下构建了传播器满足的边界值问题(BVP),并使用它来得出粒子位置边际密度和生存概率的隐式方程。我们强调了这样一个事实,即在非恒定反应性的情况下,这些方程式难以求解,因为重置不受更新过程的控制。然后,我们考虑一个更简单的问题,即位置和当地时间重置。在这种情况下,重置的生存概率可以以生存概率而无需重置表示,这使我们能够探索MFPT对重置率$ r $的依赖性和表面反应的类型。该理论以球形对称表面的示例进行了说明。
In this paper, we investigate the effects of stochastic resetting on diffusion in $\R^d\backslash \calU$, where $\calU$ is a bounded obstacle with a partially absorbing surface $\partial \calU$. We begin by considering a Robin boundary condition with a constant reactivity $κ_0$, and show how previous results are recovered in the limits $κ_0\rightarrow 0,\infty$. We then generalize the Robin boundary condition to a more general probabilistic model of diffusion-mediated surface reactions using an encounter-based approach. The latter considers the joint probability density or propagator $P(\x,\ell,t|\x_0)$ for the pair $(\X_t,\ell_t)$ in the case of a perfectly reflecting surface, where $\X_t$ and $\ell_t$ denote the particle position and local time, respectively. The local time determines the amount of time that a Brownian particle spends in a neighborhood of the boundary. The effects of surface reactions are then incorporated via an appropriate stopping condition for the boundary local time. We construct the boundary value problem (BVP) satisfied by the propagator in the presence of resetting, and use this to derive implicit equations for the marginal density of particle position and the survival probability. We highlight the fact that these equations are difficult to solve in the case of non-constant reactivities, since resetting is not governed by a renewal process. We then consider a simpler problem in which both the position and local time are reset. In this case, the survival probability with resetting can be expressed in terms of the survival probability without resetting, which allows us to explore the dependence of the MFPT on the resetting rate $r$ and the type of surface reactions. The theory is illustrated using the example of a spherically symmetric surface.