论文标题

通过从要求中提取条件:NLP方法和案例研究来自动创建接受测试

Automatic Creation of Acceptance Tests by Extracting Conditionals from Requirements: NLP Approach and Case Study

论文作者

Fischbach, Jannik, Frattini, Julian, Vogelsang, Andreas, Mendez, Daniel, Unterkalmsteiner, Michael, Wehrle, Andreas, Henao, Pablo Restrepo, Yousefi, Parisa, Juricic, Tedi, Radduenz, Jeannette, Wiecher, Carsten

论文摘要

接受测试对于确定系统是否满足最终用户要求至关重要。但是,建立接受测试是一项艰巨的任务,需要两个主要的挑战:(1)从业人员需要确定完全满足要求的正确测试用例,并且(2)由于工具支持不足,他们需要手动创建测试案例。现有的自动得出测试案例的方法需要半正式甚至正式的要求表示,尽管在实践中不受限制的自然语言很普遍。在本文中,我们介绍了我们的工具支持的方法CIRA(需求伪像的条件),能够从非正式要求中的条件陈述中创建最小的必需测试用例集。我们在与三个行业合作伙伴的案例研究中证明了CIRA的可行性。在我们的研究中,在578个手动创建的测试用例中,可以自动生成71.8%。此外,CIRA还发现了80个相关的测试用例,这些案例在手动测试案例设计中遗漏了。 CIRA可在www.cira.bth.se/demo/上公开获取。

Acceptance testing is crucial to determine whether a system fulfills end-user requirements. However, the creation of acceptance tests is a laborious task entailing two major challenges: (1) practitioners need to determine the right set of test cases that fully covers a requirement, and (2) they need to create test cases manually due to insufficient tool support. Existing approaches for automatically deriving test cases require semi-formal or even formal notations of requirements, though unrestricted natural language is prevalent in practice. In this paper, we present our tool-supported approach CiRA (Conditionals in Requirements Artifacts) capable of creating the minimal set of required test cases from conditional statements in informal requirements. We demonstrate the feasibility of CiRA in a case study with three industry partners. In our study, out of 578 manually created test cases, 71.8 % can be generated automatically. Additionally, CiRA discovered 80 relevant test cases that were missed in manual test case design. CiRA is publicly available at www.cira.bth.se/demo/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源