论文标题

有关更一般问题的一般第一定律

The generalized first law for more general matter

论文作者

Chen, Hong Zhe

论文摘要

在先前的工作中,使用该物质模块化哈密顿量与重力应力张量之间的假定关系,从热设置周围的半经典重力动力学得出了一般性熵的第一定律。但是,允许在曲率和任何张量物质字段之间进行非最小耦合,但是我们表明,热状态的模块化哈密顿量由与时间翻译相关的集成体积Noether电流以及空间时期的边界项给出。通常,一个人无法用重力应力张量成分来表达这一点。尽管如此,我们仍可以为模块化哈密顿量的正确表达式工作,我们能够恢复一项广义熵的第一定律,并且比先前的结果增加了好处。首先,包括物质和曲率之间非最小耦合产生的通用熵的任何wald-dong贡献。其次,在运动的引力方程式中,我们允许在不受干扰的背景和状态下具有不变的应力张量期望值,并将其作为其变化的一部分来解释背景场扰动。最后,允许量子物质对渐近能,例如必要时,即使对于麦克斯韦(Maxwell)的最小耦合,以恢复预期的热力学一定法律的带电黑洞的第一定律。

In previous work, a first law of generalized entropy was derived from semiclassical gravitational dynamics around thermal setups using an assumed relation between the matter modular Hamiltonian and the gravitational stress tensor. Allowing for non-minimal coupling between curvature and any tensor matter fields, we show however, that the modular Hamiltonian of thermal states is given by the integrated bulk Noether current associated to time translation plus a spacetime boundary term. One generally cannot express this in terms of gravitational stress tensor components. Still, working with the correct expression for the modular Hamiltonian, we are able to recover a first law of generalized entropy, with added benefits over the previous result. Firstly, any Wald-Dong contributions to generalized entropy resulting from non-minimal coupling between matter and curvature are included. Secondly, in gravitational equations of motion, we allow for a non-vanishing stress tensor expectation value in the unperturbed background and state, and account for background field perturbations as part of its variation. Finally, the quantum matter is allowed to contribute nontrivially to asymptotic energy, e.g. as is necessary, even for a minimally coupled Maxwell field, to recover the expected thermodynamic first law of charged black holes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源