论文标题
一维玻色纸模型中的超流量
Superfluidity in the 1D Bose-Hubbard Model
论文作者
论文摘要
我们使用各种矩阵产品状态技术研究了1D Bose-Hubbard模型中的超流体。我们通过计算热力学极限中的相位曲折的能量成本来确定超流体密度与哈伯德参数的函数。由于系统至关重要,随着功率定律和纠缠熵的增长,相关函数随着我们变分状态的键维而增长。我们将所得的缩放定律与超流体密度联系起来。我们比较了两种不同的算法,以优化无限矩阵乘积状态并开发出一个物理解释,为什么其中一个(vumps)比另一种(IDMRG)更有效。最后,我们评论一个维度的有限温度超流体以及如何在冷原子实验中实现我们的结果。
We study superfluidity in the 1D Bose-Hubbard model using a variational matrix product state technique. We determine the superfluid density as a function of the Hubbard parameters by calculating the energy cost of phase twists in the thermodynamic limit. As the system is critical, correlation functions decay as power laws and the entanglement entropy grows with the bond dimension of our variational state. We relate the resulting scaling laws to the superfluid density. We compare two different algorithms for optimizing the infinite matrix product state and develop a physical explanation why one of them (VUMPS) is more efficient than the other (iDMRG). Finally, we comment on finite-temperature superfluidity in one dimension and how our results can be realized in cold atom experiments.