论文标题

QAOA通过非结构化搜索进行指数加速的数值证据

Numerical Evidence for Exponential Speed-up of QAOA over Unstructured Search for Approximate Constrained Optimization

论文作者

Golden, John, Bärtschi, Andreas, Eidenbenz, Stephan, O'Malley, Daniel

论文摘要

尽管最近工作了,但量子交替的操作员ANSATZ(QAOA)的真正希望和局限性尚不清楚。关于QAOA的一个关键问题是其性能在多大程度上具有问题实例的输入大小,特别是QAOA回合数量达到高近似比的必要增长。我们提供了数值证据,证明了QAOA在Grover式的非结构化搜索中的指数加速,以找到约束优化问题的近似解决方案。我们的结果提供了一个有力的暗示,即QAOA能够利用优化问题的结构,从而克服了下限以进行非结构化搜索。 为此,我们对几个hamming权重的优化问题进行了全面的数值研究,其中包括所有标准研究的混合器和相位分离器汉密尔顿人(环形混合器,集团混合器,客观价值相位分离器)以及量子最小捕获的汉密尔顿(Grove Mixer,Grove Mixer,Thereshold基于基于阈值的阶段器)的组合。我们以对Grover-threshold-QAOA的指数加速来识别Clique-Objective-QAOA,并将后者的缩放与非结构化搜索相结合,所有其他QAOA组合都处于遥远的三分之一。我们的结果表明,最大化QAOA的性能需要明智的混合器和相位分离器选择,并应触发对其他QAOA变化的进一步研究。

Despite much recent work, the true promise and limitations of the Quantum Alternating Operator Ansatz (QAOA) are unclear. A critical question regarding QAOA is to what extent its performance scales with the input size of the problem instance, in particular the necessary growth in the number of QAOA rounds to reach a high approximation ratio. We present numerical evidence for an exponential speed-up of QAOA over Grover-style unstructured search in finding approximate solutions to constrained optimization problems. Our result provides a strong hint that QAOA is able to exploit the structure of an optimization problem and thus overcome the lower bound for unstructured search. To this end, we conduct a comprehensive numerical study on several Hamming-weight constrained optimization problems for which we include combinations of all standardly studied mixer and phase separator Hamiltonians (Ring mixer, Clique mixer, Objective Value phase separator) as well as quantum minimum-finding inspired Hamiltonians (Grover mixer, Threshold-based phase separator). We identify Clique-Objective-QAOA with an exponential speed-up over Grover-Threshold-QAOA and tie the latter's scaling to that of unstructured search, with all other QAOA combinations coming in at a distant third. Our result suggests that maximizing QAOA performance requires a judicious choice of mixer and phase separator, and should trigger further research into other QAOA variations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源