论文标题

无限产品生成功能的对数洞穴

Log-Concavity of Infinite Product Generating Functions

论文作者

Heim, Bernhard, Neuhauser, Markus

论文摘要

在$ 1970 $ s中,尼古拉斯证明了生成函数定义的系数$ p_d(n)$。 q^n \ right)^{ - n^{d-1}}} \ end {equation*}是log-concave,对于$ d = 1 $。最近,Ono,Pujahari和Rolen将结果扩展到$ d = 2 $。请注意,$ p_1(n)= p(n)$是分区函数,$ p_2(n)= \ func {pp} \ left(n \ right)$是平面分区的数量。在本文中,我们以$ p_d(n)$为$ d $投资物业。令$ n \ geq 6 $。然后,$ p_d(n)$几乎是log-concave,$ n $可分配$ 3 $,否则几乎是严格的log-convex。

In the $1970$s Nicolas proved that the coefficients $p_d(n)$ defined by the generating function \begin{equation*} \sum_{n=0}^{\infty} p_d(n) \, q^n = \prod_{n=1}^{\infty} \left( 1- q^n\right)^{-n^{d-1}} \end{equation*} are log-concave for $d=1$. Recently, Ono, Pujahari, and Rolen have extended the result to $d=2$. Note that $p_1(n)=p(n)$ is the partition function and $p_2(n)=\func{pp}\left( n\right) $ is the number of plane partitions. In this paper, we invest in properties for $p_d(n)$ for general $d$. Let $n \geq 6$. Then $p_d(n)$ is almost log-concave for $n$ divisible by $3$ and almost strictly log-convex otherwise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源