论文标题

SICS的维度塔。 ii。一些结构

Dimension towers of SICs. II. Some constructions

论文作者

Bengtsson, Ingemar, Srivastava, Basudha

论文摘要

SIC是有限的尺寸希尔伯特空间中最大的等缘紧密框架。鉴于尺寸$ d $的SIC,有充分的证据表明,始终存在一个尺寸$ d(d-2)$的对齐的SIC,具有可预测的对称性和嵌入其中的较小的equiangular紧密帧。我们提供了如何计算共享这些属性的dimension $ d(d-2)$中的向量集的配方。它们由在输入$ d $ dimensional sic的数字定义的某些子空间中的最大纠结向量组成。但是,构造包含免费参数,我们尚未证明可以始终选择它们,以便其中一组向量是SIC。我们提供一些工作的例子,我们希望可以向读者建议如何改善我们的施工。为简单起见,我们将自己限制在奇数维度的情况下。

A SIC is a maximal equiangular tight frame in a finite dimensional Hilbert space. Given a SIC in dimension $d$, there is good evidence that there always exists an aligned SIC in dimension $d(d-2)$, having predictable symmetries and smaller equiangular tight frames embedded in them. We provide a recipe for how to calculate sets of vectors in dimension $d(d-2)$ that share these properties. They consist of maximally entangled vectors in certain subspaces defined by the numbers entering the $d$ dimensional SIC. However, the construction contains free parameters and we have not proven that they can always be chosen so that one of these sets of vectors is a SIC. We give some worked examples that, we hope, may suggest to the reader how our construction can be improved. For simplicity we restrict ourselves to the case of odd dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源