论文标题
在拉斯穆森不变的整体版本上
On an integral version of the Rasmussen invariant
论文作者
论文摘要
我们在整数的系数环上定义了一个rasmussen $ s $ invariant,并显示了它与在字段上定义的$ s $ invariants的关系。获得了由其产生的结的切片属的下限,我们给出了这个结的示例,该结的示例比来自赛场上的$ s $ invariants的所有下限要好。我们还将其与与第一个Steenrod Square相关的Lipshitz-Sarkar改进进行了比较。
We define a Rasmussen $s$-invariant over the coefficient ring of the integers, and show how it is related to the $s$-invariants defined over a field. A lower bound for the slice genus of a knot arising from it is obtained, and we give examples of knots for which this lower bound is better than all lower bounds coming from the $s$-invariants over fields. We also compare it to the Lipshitz-Sarkar refinement related to the first Steenrod square.