论文标题

学会代表一个小组讲话:发送共享消息的中等访问控制

Learning to Speak on Behalf of a Group: Medium Access Control for Sending a Shared Message

论文作者

Haque, Shaan ul, Chandak, Siddharth, Chiariotti, Federico, Gunduz, Deniz, Popovski, Petar

论文摘要

工业互联网(IIOT)技术的快速发展不仅实现了新的应用程序,而且还提出了与有限资源的可靠沟通挑战。在这项工作中,我们定义了一个看似简单的新颖问题,在这些情况下可能会出现,其中一组传感器需要传达联合观察。该观察结果是由节点的随机子集共享的,该节点需要将其传播到网络的其余部分,但是协调很复杂:由于信号传导限制需要使用随机访问方案而不是共享通道,每个传感器都需要与其他观察者隐含地与其他人进行隐式协调,因此至少有一个传播没有碰撞而无需碰撞。与现有的媒介访问控制方案不同,这里的目标不是最大化总数,而是要确保共享消息通过,而不论发件人如何。除了网络其余部分缺乏确认或缺乏信号外,还缺乏任何信号,这使得确定最佳的集体传输策略是一个重大挑战。我们从理论上分析了这个协调问题,证明其硬度并提供低复杂的解决方案。尽管在某些特殊情况下,基于低复杂性聚类的方法可提供近乎最佳的性能,但对于一般场景,我们将每个传感器建模为多臂匪徒(MAB),并提供基于学习的解决方案。数值结果显示了这种方法在各种情况下的有效性。

The rapid development of Industrial Internet of Things (IIoT) technologies has not only enabled new applications, but also presented new challenges for reliable communication with limited resources. In this work, we define a deceptively simple novel problem that can arise in these scenarios, in which a set of sensors need to communicate a joint observation. This observation is shared by a random subset of the nodes, which need to propagate it to the rest of the network, but coordination is complex: as signaling constraints require the use of random access schemes over shared channels, each sensor needs to implicitly coordinate with others with the same observation, so that at least one of the transmissions gets through without collisions. Unlike existing medium access control schemes, the goal here is not to maximize total goodput, but rather to make sure that the shared message gets through, regardless of the sender. The lack of any signaling, aside from an acknowledgment or lack thereof from the rest of the network, makes determining the optimal collective transmission strategy a significant challenge. We analyze this coordination problem theoretically, prove its hardness, and provide low-complexity solutions. While a low-complexity clustering-based approach is shown to provide near-optimal performance in certain special cases, for the general scenarios, we model each sensor as a multi-armed bandit (MAB), and provide a learning-based solution. Numerical results show the effectiveness of this approach in a variety of cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源