论文标题

探索功能重归其化组方法中的$θ$ -VACUUM结构

Exploring the $θ$-vacuum structure in the functional renormalization group approach

论文作者

Fukushima, Kenji, Shimazaki, Takuya, Tanizaki, Yuya

论文摘要

我们在$ s^1 $上的简单量子机械系统中调查了$θ$ -VACUUM结构和't Hooft异常,以仔细检查功能恢复量化组(FRG)方法的适用性。即使FRG是一个确切的配方,由于配方的差异性质,FRG方程的幼稚应用也会错过$θ$项的贡献。我们首先在$ s^1 $上回顾了该量子机械系统,该系统可通过路径积分和规范量化可解决。我们讨论如何构建量子有效动作,包括$θ$依赖性。这样的显式计算给出了一个微妙的问题,即对于具有符号问题的通用系统,Legendre变换是否定义得很好。然后,我们考虑了一种变形的理论,可以通过带有有限深度$ \ propto g $的葡萄酒瓶潜力来放松整体绕组,以便以$ g \ \ \ infty $限制回收原始的$ s^1 $理论。我们从数值上求解了变形理论中的能量谱,这是$ g $的函数和$θ$在规范量化中的函数。我们测试了FRG方法中最简单的局部电位近似(LPA)的功效,并发现基态能量的正确行为对小$θ$很好地再现。当能量水平交叉接近时,LPA流量会分解,并且未能描述“ T Hooft异常”预期的基态变性。我们终于回到了原始理论,并使用反派晶格动作讨论了替代表述。对$θ=π$的反派晶格的分析表明,有效动作的非局部性对于捕获基态的水平交叉行为至关重要。

We investigate the $θ$-vacuum structure and the 't Hooft anomaly at $θ=π$ in a simple quantum mechanical system on $S^1$ to scrutinize the applicability of the functional renormalization group (fRG) approach. Even though the fRG is an exact formulation, a naive application of the fRG equation would miss contributions from the $θ$ term due to the differential nature of the formulation. We first review this quantum mechanical system on $S^1$ that is solvable with both the path integral and the canonical quantization. We discuss how to construct the quantum effective action including the $θ$ dependence. Such an explicit calculation poses a subtle question of whether a Legendre transform is well defined or not for general systems with the sign problem. We then consider a deformed theory to relax the integral winding by introducing a wine-bottle potential with the finite depth $\propto g$, so that the original $S^1$ theory is recovered in the $g\to\infty$ limit. We numerically solve the energy spectrum in the deformed theory as a function of $g$ and $θ$ in the canonical quantization. We test the efficacy of the simplest local potential approximation (LPA) in the fRG approach and find that the correct behavior of the ground state energy is well reproduced for small $θ$. When the energy level crossing is approached, the LPA flow breaks down and fails in describing the ground state degeneracy expected from the 't Hooft anomaly. We finally turn back to the original theory and discuss an alternative formulation using the Villain lattice action. The analysis with the Villain lattice at $θ=π$ indicates that the nonlocality of the effective action is crucial to capture the level crossing behavior of the ground states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源