论文标题

基于进程和UWB范围数据的融合的相对转换估计

Relative Transformation Estimation Based on Fusion of Odometry and UWB Ranging Data

论文作者

Nguyen, Thien Hoang, Xie, Lihua

论文摘要

在这项工作中,研究了使用板载探测仪和机器人间距离测量值的4个自由度(3D位置和标题)机器人对机器人相对框架转换估计的问题。首先,我们对问题进行了理论分析,即CRAMER-RAO下限(CRLB),Fisher Information Matrix(FIM)及其决定因素的推导和解释。其次,我们提出了基于优化的方法来解决该问题,包括二次约束二次编程(QCQP)和相应的半决赛编程(SDP)放松。此外,我们解决了以前的工作中忽略的实际问题,例如对超宽带(UWB)和探测传感器之间的空间偏移的核算,拒绝UWB异常值并在开始操作之前检查单数配置。最后,对空中机器人进行的广泛的模拟和现实生活实验表明,所提出的QCQP和SDP方法的表现要比最先进的方法,尤其是在几何差或大的测量噪声条件下。通常,QCQP方法以计算时间为代价提供了最佳结果,而SDP方法运行得更快,并且在大多数情况下非常准确。

In this work, the problem of 4 degree-of-freedom (3D position and heading) robot-to-robot relative frame transformation estimation using onboard odometry and inter-robot distance measurements is studied. Firstly, we present a theoretical analysis of the problem, namely the derivation and interpretation of the Cramer-Rao Lower Bound (CRLB), the Fisher Information Matrix (FIM) and its determinant. Secondly, we propose optimization-based methods to solve the problem, including a quadratically constrained quadratic programming (QCQP) and the corresponding semidefinite programming (SDP) relaxation. Moreover, we address practical issues that are ignored in previous works, such as accounting for spatial-temporal offsets between the ultra-wideband (UWB) and odometry sensors, rejecting UWB outliers and checking for singular configurations before commencing operation. Lastly, extensive simulations and real-life experiments with aerial robots show that the proposed QCQP and SDP methods outperform state-of-the-art methods, especially in geometrically poor or large measurement noise conditions. In general, the QCQP method provides the best results at the expense of computational time, while the SDP method runs much faster and is sufficiently accurate in most cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源