论文标题
评估深与宽阔的学习者作为个性化电子邮件促销建议的上下文匪徒
Evaluating Deep Vs. Wide & Deep Learners As Contextual Bandits For Personalized Email Promo Recommendations
论文作者
论文摘要
个性化使企业能够从过去的互动中学习客户的喜好,从而针对具有更相关内容的个人客户。我们认为,从几种选项中预测给定客户的最佳促销报价的问题是上下文强盗问题。为客户和/或广告系列识别信息可用于推断未知的客户/广告系列功能,以改善最佳报价预测。使用生成的合成电子邮件促销数据集,我们展示了(a)宽而深网的类似预测精确度,该网络将识别信息(或其他分类特征)作为宽部分的输入以及(b)纯神经网络的输入,其中包含输入中分类特征的嵌入。包括分类特征的精度提高取决于每个类别的未知数值特征的可变性。我们还表明,使用宽敞和深层模型中的蒙特卡洛辍学层近似的上限置信度或汤普森抽样选择选项,从而稍微改善了模型性能。
Personalization enables businesses to learn customer preferences from past interactions and thus to target individual customers with more relevant content. We consider the problem of predicting the optimal promotional offer for a given customer out of several options as a contextual bandit problem. Identifying information for the customer and/or the campaign can be used to deduce unknown customer/campaign features that improve optimal offer prediction. Using a generated synthetic email promo dataset, we demonstrate similar prediction accuracies for (a) a wide and deep network that takes identifying information (or other categorical features) as input to the wide part and (b) a deep-only neural network that includes embeddings of categorical features in the input. Improvements in accuracy from including categorical features depends on the variability of the unknown numerical features for each category. We also show that selecting options using upper confidence bound or Thompson sampling, approximated via Monte Carlo dropout layers in the wide and deep models, slightly improves model performance.