论文标题
量子退火针对硬性2-SAT问题:最小能量差距的分布和缩放和成功概率
Quantum annealing for hard 2-SAT problems : Distribution and scaling of minimum energy gap and success probability
论文作者
论文摘要
近年来,量子退火已成为解决各种优化问题的有前途的候选人的地位。我们使用一组由最高18个变量问题组成的硬性2-拟合(2-SAT)问题,分析了量子退火算法的缩放复杂性,并研究了最小能量差距的分布和成功概率。我们通过引入额外的术语“触发汉密尔顿”(Trigger Hamiltonian)来扩展对标准量子退火hamiltonian的分析,该术语可以是两种类型的:铁磁和抗铁磁性。我们使用这些触发汉密尔顿人来研究他们对解决所选2个问题问题的成功概率的影响。我们发现,尽管标准和改良的量子退火汉密尔顿人的运行时缩放时间是指数级,但在添加触发式哈密顿量的情况下,缩放常数可能会大大较小。此外,对触发哈密顿式和退火时间的某些选择可能会导致比模拟退火更好的缩放。最后,我们还使用D-Wave Systems Inc.的量子退火器来研究其在解决2-SAT问题方面的性能,并将其与仿真结果进行比较。
In recent years, quantum annealing has gained the status of being a promising candidate for solving various optimization problems. Using a set of hard 2-satisfiabilty (2-SAT) problems, consisting of upto 18-variables problems, we analyze the scaling complexity of the quantum annealing algorithm and study the distributions of the minimum energy gap and the success probability. We extend the analysis of the standard quantum annealing Hamiltonian by introducing an additional term, the trigger Hamiltonian, which can be of two types : ferromagnetic and antiferromagnetic. We use these trigger Hamiltonians to study their influence on the success probability for solving the selected 2-SAT problems. We found that although the scaling of the run-time is exponential for the standard and modified quantum annealing Hamiltonians, the scaling constant in case of adding the trigger Hamiltonians can be significantly smaller. Furthermore, certain choices for the trigger Hamiltonian and annealing times can result in a better scaling than that for simulated annealing. Lastly, we also use the quantum annealers of D-Wave Systems Inc. to study their performance in solving the 2-SAT problems and compare it with the simulation results.