论文标题

Minijpas调查类星体选择I:用于分类的模拟目录

The miniJPAS survey quasar selection I: Mock catalogues for classification

论文作者

Queiroz, Carolina, Abramo, L. Raul, Rodrigues, Natália V. N., Pérez-Ràfols, Ignasi, Martínez-Solaeche, Ginés, Hernán-Caballero, Antonio, Hernández-Monteagudo, Carlos, Lumbreras-Calle, Alejandro, Pieri, Matthew M., Morrison, Sean S., Bonoli, Silvia, Chaves-Montero, Jonás, Chies-Santos, Ana L., Díaz-García, L. A., Fernandez-Soto, Alberto, Delgado, Rosa M. González, Alcaniz, Jailson, Benítez, Narciso, Cenarro, A. Javier, Civera, Tamara, Dupke, Renato A., Ederoclite, Alessandro, López-Sanjuan, Carlos, Marín-Franch, Antonio, de Oliveira, Claudia Mendes, Moles, Mariano, Sodré Jr., Laerte, Taylor, Keith, Varela, Jesús, Ramió, Héctor Vázquez

论文摘要

在这一系列论文中,我们采用了几种机器学习(ML)方法来对Minijpas目录中的类似点状来源进行分类,并识别候选候选者。由于目前尚无光谱镜确认的来源的代表性样本来训练这些ML算法,因此我们依靠模拟目录。在第一篇论文中,我们开发了一条管道,以在斯隆数字天空调查中靶向的物体的光谱来计算类星体,星系和恒星的合成光度法。要匹配Minijpas点源的所有频段中相同的深度和信噪比的分布,在$ 17.5 \ leq r <24 $ $ 17.5 \ leq r <24 $中,我们通过将原始的$ r $ band幅度分布转移到微弱的一端,从而增强我们的可用光谱样本从具有给定宽度的高斯实现或高斯函数的组合中对通量方差进行采样。最后,我们还添加了所有实际观察中存在的非潜在模式。尽管这项工作中介绍的模拟目录是朝着符合Minijpas观测属性的模拟数据集的第一步,但可以对这些模拟进行调整以实现其他光度测量的目的。

In this series of papers, we employ several machine learning (ML) methods to classify the point-like sources from the miniJPAS catalogue, and identify quasar candidates. Since no representative sample of spectroscopically confirmed sources exists at present to train these ML algorithms, we rely on mock catalogues. In this first paper we develop a pipeline to compute synthetic photometry of quasars, galaxies and stars using spectra of objects targeted as quasars in the Sloan Digital Sky Survey. To match the same depths and signal-to-noise ratio distributions in all bands expected for miniJPAS point sources in the range $17.5\leq r<24$, we augment our sample of available spectra by shifting the original $r$-band magnitude distributions towards the faint end, ensure that the relative incidence rates of the different objects are distributed according to their respective luminosity functions, and perform a thorough modeling of the noise distribution in each filter, by sampling the flux variance either from Gaussian realizations with given widths, or from combinations of Gaussian functions. Finally, we also add in the mocks the patterns of non-detections which are present in all real observations. Although the mock catalogues presented in this work are a first step towards simulated data sets that match the properties of the miniJPAS observations, these mocks can be adapted to serve the purposes of other photometric surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源