论文标题

蛇:通过路径探索的贝叶斯优化

SnAKe: Bayesian Optimization with Pathwise Exploration

论文作者

Folch, Jose Pablo, Zhang, Shiqiang, Lee, Robert M, Shafei, Behrang, Walz, David, Tsay, Calvin, van der Wilk, Mark, Misener, Ruth

论文摘要

贝叶斯优化是一种非常有效的工具,用于优化昂贵的黑盒功能。受到使用液滴微流体反应器的应用和表征反应化学的应用的启发,我们考虑了一种新颖的环境,当迭代之间做出较大的输入变化时,评估该功能的费用可能会大大增加。我们进一步假设我们正在异步工作,这意味着我们必须在评估先前的实验之前选择新的查询。本文调查了该问题,并通过自适应连接样品(Snake)介绍了“顺序贝叶斯优化”,该(Snake)通过考虑大量查询和预先构建优化路径来提供解决方案,以最大程度地减少输入成本。我们研究了一些融合属性,并从经验上表明,该算法能够在同步和异步设置中获得类似于古典贝叶斯优化算法的遗憾,同时显着降低了输入成本。我们表明该方法可以选择其单个高参数,并提供无参数的替代方案。

Bayesian Optimization is a very effective tool for optimizing expensive black-box functions. Inspired by applications developing and characterizing reaction chemistry using droplet microfluidic reactors, we consider a novel setting where the expense of evaluating the function can increase significantly when making large input changes between iterations. We further assume we are working asynchronously, meaning we have to select new queries before evaluating previous experiments. This paper investigates the problem and introduces 'Sequential Bayesian Optimization via Adaptive Connecting Samples' (SnAKe), which provides a solution by considering large batches of queries and preemptively building optimization paths that minimize input costs. We investigate some convergence properties and empirically show that the algorithm is able to achieve regret similar to classical Bayesian Optimization algorithms in both synchronous and asynchronous settings, while reducing input costs significantly. We show the method is robust to the choice of its single hyper-parameter and provide a parameter-free alternative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源