论文标题
SU(3)Polyakov环中有限量数量密度波动的研究扩展了Nambu-Jona-Lasinio模型,以搜索QCD临界点
Study of finite volume number density fluctuations in the SU(3) Polyakov loop extended Nambu-Jona-Lasinio model for the search of the QCD Critical Point
论文作者
论文摘要
临界端点(CEP)是量子染色体动力学(QCD)相图的基本特征,标志着夸克 - 杜伦等离子体和辐射物质之间的边界。重型离子碰撞实验,例如RHIC束能量扫描,目的是通过改变碰撞能量来探测QCD相图。但是,产生的颗粒的短暂性质使直接测量具有挑战性,需要理论模型。这项研究使用Polyakov-loop增强的Nambu-Jona-Lasinio(PNJL)模型探讨了密度波动对CEP的影响,重点是有限和无限体积系统中的夸克数密度。源自热力学敏感性的夸克数密度是CEP位置的可靠预测指标。我们计算密度波动,并将其归一化$ t^3 $作为温度和$ t/μ_x$的功能(其中x代表光夸克,奇怪的夸克和重子),分析拐点和最大值以估计关键区域。为了比较实验数据,该研究的能量与RHIC束能量扫描相同。结果突出了有限体积对夸克密度波动的影响以及QCD相变的关键指标,并与实验数据提供了定量比较。这项工作增强了我们对QCD相结构的理解,并支持在高能重型离子碰撞中对CEP的持续搜索,从而弥合了理论预测和实验性观察。
The critical endpoint (CEP) is a fundamental feature of the Quantum Chromodynamics (QCD) phase diagram, marking the boundary between quark-gluon plasma and hadronic matter. Heavy-ion collision experiments, such as the RHIC Beam Energy Scan, aim to probe the QCD phase diagram by varying collision energy. However, the short-lived nature of produced particles makes direct measurements challenging, necessitating theoretical models. This study explores the impact of density fluctuations on the CEP using the Polyakov-loop enhanced Nambu-Jona-Lasinio (PNJL) model, focusing on quark number densities in both finite and infinite volume systems. Quark number densities, derived from thermodynamic susceptibilities, serve as reliable predictors for the CEP's location. We calculate density fluctuations and normalize them by $T^3$ as functions of temperature and $T/μ_x$ (where x represents light quarks, strange quarks, and baryons), analyzing inflection points and maxima to estimate the critical region. To compare the experimental data, the study has been performed at energies identical to those of the RHIC Beam Energy Scan. The results highlight the influence of finite volume effects on quark density fluctuations, and key indicators of QCD phase transitions, and provide quantitative comparisons with experimental data. This work enhances our understanding of QCD phase structure and supports the ongoing search for the CEP in high-energy heavy-ion collisions, bridging theoretical predictions and experimental observations.