论文标题
全息系统中的擦除量量子记忆和量子无效条件
Erasure tolerant quantum memory and the quantum null energy condition in holographic systems
论文作者
论文摘要
在有限温度下储存量子信息的原理,对主动误差校正的需求最少是一个活跃的研究领域。我们通过量子无效的能量条件(QNEC)在二维全息构造场理论中提出了这个问题,我们之前已经证明了这些问题,以实施量子热力学对这种多体系统施加的限制。我们研究了有限温度背景上有限的Von-Neumann熵的两个类似手性传播激发的逻辑量子的明确编码,该激发可以通过适当的无处不在和瞬时的能量弹药的擦除来实现,而无限能量的不合理和瞬时的能量摩尔植物从无限能量的无限能量浴场中,由于该系统由于该系统传递到热量状态而导致的无限能量。全外,这些快速擦除过程可以用前面描述的广义ADS-vaidya几何形状来描述,在该几何形状中不需要假设特定形式的批量物质。我们表明,量子无效条件为删除所需的最小有限温度提供了分析结果,该温度大于与Landauer原理一致的初始背景温度大。特别是,我们发现了一个简单的表达式,即擦除大量编码量子所需的最低最终温度。我们还发现,如果编码量子位在间隔短的时间内定位于特定的定位长度,那么快速擦除过程是不可能的,此外,此定位长度是由中央电荷确定的最佳编码量子的最佳编码量子。我们估计最佳编码量子位,以实现对快速擦除的实际保护。我们讨论了我们的研究可能概括,以在有限温度下运行的耐断层量子门的新构建。
Investigating principles for storage of quantum information at finite temperature with minimal need for active error correction is an active area of research. We bear upon this question in two-dimensional holographic conformal field theories via the quantum null energy condition (QNEC) that we have shown earlier to implement the restrictions imposed by quantum thermodynamics on such many-body systems. We study an explicit encoding of a logical qubit into two similar chirally propagating excitations of finite von-Neumann entropy on a finite temperature background whose erasure can be implemented by an appropriate inhomogeneous and instantaneous energy-momentum inflow from an infinite energy memoryless bath due to which the system transits to a thermal state. Holographically, these fast erasure processes can be depicted by generalized AdS-Vaidya geometries described previously in which no assumption of specific form of bulk matter is needed. We show that the quantum null energy condition gives analytic results for the minimal finite temperature needed for the deletion which is larger than the initial background temperature in consistency with Landauer's principle. In particular, we find a simple expression for the minimum final temperature needed for the erasure of a large number of encoding qubits. We also find that if the encoding qubits are localized over an interval shorter than a specific localization length, then the fast erasure process is impossible, and furthermore this localization length is the largest for an optimal amount of encoding qubits determined by the central charge. We estimate the optimal encoding qubits for realistic protection against fast erasure. We discuss possible generalizations of our study for novel constructions of fault-tolerant quantum gates operating at finite temperature.