论文标题
螺旋和涡流
Helicoids and vortices
论文作者
论文摘要
我们指出流体动力学与最小表面理论之间的有趣联系:当将螺旋形粘合到最小的表面时,螺旋螺旋体的极限位置对应于“涡流晶体”,这是2D流体中点涡流的平衡,在2D流体中,将其作为刚体一起移动。尽管已经研究了近150年的涡流晶体,但最小表面的粘合结构相对较新。由于连接的结果,我们通过简单地比较音符来获得许多新的最小表面和一些新的涡流晶体。
We point out an interesting connection between fluid dynamics and minimal surface theory: When gluing helicoids into a minimal surface, the limit positions of the helicoids correspond to a "vortex crystal", an equilibrium of point vortices in 2D fluid that move together as a rigid body. While vortex crystals have been studied for almost 150 years, the gluing construction of minimal surfaces is relatively new. As a consequence of the connection, we obtain many new minimal surfaces and some new vortex crystals by simply comparing notes.