论文标题
基于物理和化学的构成框架,用于使用相位场方法的热化学陈化弹性体
Physics and chemistry-based constitutive framework for thermo-chemically aged elastomer using phase-field approach
论文作者
论文摘要
我们提出了一个基于物理和化学的本构框架,以预测热化学上老化的弹性体的应力反应,并使用相位场方法捕获其脆性衰竭。在氧气存在下,高温老化会导致大分子弹性体网络发生复杂的化学反应,引起了两种主要机制:链条缩放和交联。化学交联有助于表征陈年弹性体脆弱反应的僵化行为。在这项工作中,我们首先修改Helmholtz自由能,以结合热化学驱动的交联过程的效果。然后,我们将本构描述配备了相位场,以通过基于应变的裂缝标准捕获诱发的脆性故障。我们表明,我们所提出的框架是独立的,仅需要四个主要材料特性,这些特性由于化学表征实验获得的交联密度的变化完全是由于热化学老化而产生的。首先在分析中针对均匀棒中单轴张力的情况进行分析求解,以突出所有四种材料属性之间的互连。然后,该框架通过商业FE软件Abaqus中的用户元素子例程(UEL)在有限元(Fe)上下文中进行数值实现,以模拟更复杂的几何形状和加载状态。该框架最终在文献中可用的一组实验结果方面得到了验证。比较证实,所提出的构造框架可以准确预测热化学老化弹性体的机械响应。提供了进一步的数值示例,以证明不断发展的材料特性对含有预先存在裂纹的标本的响应的影响。
We propose a physics and chemistry-based constitutive framework to predict the stress responses of thermo-chemically aged elastomers and capture their brittle failure using the phase-field approach. High-temperature aging in the presence of oxygen causes the macromolecular network of elastomers to undergo complex chemical reactions inducing two main mechanisms: chain-scission and crosslinking. Chemical crosslinking contributes to the stiffening behavior characterizing the brittle response of aged elastomers. In this work, we first modify the Helmholtz free energy to incorporate the effect of thermo-chemically-driven crosslinking processes. Then, we equip the constitutive description with phase-field to capture the induced brittle failure via a strain-based criterion for fracture. We show that our proposed framework is self-contained and requires only four main material properties whose evolution due to thermo-chemical aging is characterized entirely by the change of the crosslink density obtained based on chemical characterization experiments. The developed constitutive framework is first solved analytically for the case of uniaxial tension in a homogeneous bar to highlight the interconnection between all four material properties. Then, the framework is numerically implemented within a finite element (FE) context via a user-element subroutine (UEL) in the commercial FE software Abaqus to simulate more complicated geometries and loading states. The framework is finally validated with respect to a set of experimental results available in the literature. The comparison confirms that the proposed constitutive framework can accurately predict the mechanical response of thermo-chemically aged elastomers. Further numerical examples are provided to demonstrate the effects of evolving material properties on the response of specimens containing pre-existing cracks.