论文标题

与概率计算,可逆逻辑和平行回火来解决最大的满意度问题的旋转型方法

Spintronics-compatible approach to solving maximum satisfiability problems with probabilistic computing, invertible logic and parallel tempering

论文作者

Grimaldi, Andrea, Sánchez-Tejerina1, Luis, Aadit, Navid Anjum, Chiappini, Stefano, Carpentieri, Mario, Camsari, Kerem, Finocchio, Giovanni

论文摘要

搜索与硬件兼容的策略来解决NP-HARD组合优化问题(COPS)是当今计算研究的重要挑战,因为它们在现实世界优化问题中的广泛应用。在这里,我们引入了一种非常规可伸缩的方法,以面对最大的满足性问题(MAX-SAT),该方法将概率计算与p-bits,Parallel Weeding和可逆逻辑门的概念相结合。从理论上讲,我们基于一组耦合的Landau-Lifshitz-Gilbert方程来显示这种方法的自旋实现,显示了能源有效的潜在路径,并且非常快速(p-bits显示NS时间尺度切换)用于解决方案的解决方案。该算法以2016年最大 - SAT竞争中的硬性最大SAT实例为基准(例如,可以用2851 p-bits描述的HG-4SAT-V150-C1350-1.CNF,包括加权Max-Sat和Max-Cut问题。

The search of hardware-compatible strategies for solving NP-hard combinatorial optimization problems (COPs) is an important challenge of today s computing research because of their wide range of applications in real world optimization problems. Here, we introduce an unconventional scalable approach to face maximum satisfiability problems (Max-SAT) which combines probabilistic computing with p-bits, parallel tempering, and the concept of invertible logic gates. We theoretically show the spintronic implementation of this approach based on a coupled set of Landau-Lifshitz-Gilbert equations, showing a potential path for energy efficient and very fast (p-bits exhibiting ns time scale switching) architecture for the solution of COPs. The algorithm is benchmarked with hard Max-SAT instances from the 2016 Max-SAT competition (e.g., HG-4SAT-V150-C1350-1.cnf which can be described with 2851 p-bits), including weighted Max-SAT and Max-Cut problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源