论文标题
边缘重建和整数和分数量子厅相的新兴中性模式
Edge Reconstruction and Emergent Neutral Modes in Integer and Fractional Quantum Hall Phases
论文作者
论文摘要
本文包括对我们最近在整数和分数量子厅(QH)阶段的边缘重建而出现的有关分数手性模式的作品的评论。添加的新部分是对$ν= 2/5 $相位的边缘重建的分析。 QH状态是物质的拓扑阶段,具有边缘的手性无间隙模式。这些边缘模式可能会传播下游或上游,并且可以支持充电或中立激发。从拓扑考虑因素来看,粒子状QH状态有望仅支持下游电荷模式。然而,电子排斥与边界限制电势之间的相互作用可能会在边缘驱动某些量子相变(称为重建),这与其他成对的相反传播模式的成核有关。采用变异方法,我们在这里研究了在$ν= 1、1/3 $和$ 2/5 $的原型粒子样阶段中的边缘重建,这是限制电位的斜率的函数。我们的分析表明,随后由无序诱导的隧道和间相互作用驱动的边缘模式的重新归一化可能导致上游中性模式的出现。这些预测可以在适当设计的运输实验中进行测试。我们的结果也与这些QH相的上游中性模式的先前观察结果一致,并且可以解释电子马赫·泽尔德设置中没有任何核心干扰。
This paper comprises a review of our recent works on fractional chiral modes that emerge due to edge reconstruction in integer and fractional quantum Hall (QH) phases. The new part added is an analysis of edge reconstruction of the $ν= 2/5$ phase. QH states are topological phases of matter featuring chiral gapless modes at the edge. These edge modes may propagate downstream or upstream, and may support either charge or charge-neutral excitations. From topological considerations, particle-like QH states are expected to support only downstream charge modes. However the interplay between the electronic repulsion and the boundary confining potential may drive certain quantum phase transitions (called reconstructions) at the edge, which are associated to the nucleation of additional pairs of counter-propagating modes. Employing variational methods, here we study edge reconstruction in the prototypical particle-like phases at $ν= 1, 1/3$ and $2/5$ as a function of the slope of the confining potential. Our analysis shows that subsequent renormalization of the edge modes, driven by disorder-induced tunnelling and intermode interactions, may lead to the emergence of upstream neutral modes. These predictions may be tested in suitably designed transport experiments. Our results are also consistent with previous observations of upstream neutral modes in these QH phases, and could explain the absence of anyonic interference in electronic Mach-Zehnder setups.