论文标题
替代掺杂的GESE:用应变工程的可调氧化状态
Substitutional Doped GeSe: Tunable Oxidative States with Strain Engineering
论文作者
论文摘要
分层的粉红元化材料具有大量的纳米电子应用,例如电阻性开关和能量收获,例如由于富含电子,轨道和格子激发而获得的光催化剂。在这项工作中,我们通过使用第一原理计算,探索了用13个金属阳离子的替代掺杂的单钙化乙烯剂GESE。典型的掺杂剂(包括s-shell(Alkali Elements Li和Na),P壳(AL,PB和BI),3D(Fe,Cu,Cu,Co和Ni),4D(PD和AG)以及5D(AU和PT)元素进行系统检查。在所有具有最高氧化态的阳离子掺杂剂中,这意味着由电场驱动的高迁移率,而Al掺杂的GESE可能是新型电阻开关装置的有前途的候选人。我们表明,掺杂Fe,Co或Ni的GESE频带间隙中存在许多局部诱导状态,而对于Cu,Ag和Au案例,间隙中没有此类状态。 Ag和Cu分别为 + 0.27和 + 0.35充电,正电荷对GESE中的场驱动运动有益。相比之下,AU的带电略有负电荷呈现Au掺杂的GESE是有希望的光催化剂和增强的表面等离子体。此外,我们探索了GESE中掺杂剂和菌株的共存,并找到GESE中局部状态的动态调整,其水平连续地向上/向下移动。这会在应变下诱导掺杂剂的动态氧化态,这在金属热门运动会导致显着变形的复合材料中非常流行。
Layered chalcogenide materials have a wealth of nanoelectronics applications like resistive switching and energy-harvesting such as photocatalyst owing to rich electronic, orbital, and lattice excitations. In this work, we explore monochalcogenide germanium selenide GeSe with respect to substitutional doping with 13 metallic cations by using first-principles calculations. Typical dopants including s-shell (alkali elements Li and Na), p-shell (Al, Pb and Bi), 3d (Fe, Cu, Co and Ni), 4d (Pd and Ag) and 5d (Au and Pt) elements are systematically examined. Amongst all the cationic dopants, Al with the highest oxidation states, implying a high mobility driven by electric field, and Al-doped GeSe may be a promising candidate for novel resistive switching devices. We show that there exist many localized induced states in the band gap of GeSe upon doping Fe, Co, or Ni, while for Cu, Ag, and Au cases there is no such states in the gap. The Ag and Cu are + 0.27 and + 0.35 charged respectively and the positive charges are beneficial for field-driven motion in GeSe. In contrast, Au is slightly negatively charged renders Au-doped GeSe a promising photocatalyst and enhanced surface plasmon. Moreover, we explore the coexistence of dopant and strain in GeSe and find dynamical adjustments of localized states in GeSe with levels successive shifting upward/downward with strain. This induces dynamic oxidative states of the dopants under strain which should be quite popular in composites where motion of metal adatoms causes significant deformation.