论文标题

跨模式检索的判别监督子空间学习

Discriminative Supervised Subspace Learning for Cross-modal Retrieval

论文作者

Zhang, Haoming, Wu, Xiao-Jun, Xu, Tianyang, Zhang, Donglin

论文摘要

如今,异质数据之间的度量仍然是跨模式检索的开放问题。跨模式检索的核心是如何衡量不同类型数据之间的相似性。已经开发了许多方法来解决问题。作为主流之一,基于子空间学习的方法要注意学习一个共同的子空间,在该子空间中可以直接测量多模式数据之间的相似性。但是,许多现有方法仅着眼于学习潜在子空间。他们忽略了歧视性信息的全部使用,因此语义上的结构信息不能得到很好的保存。因此,令人满意的结果无法按预期实现。我们在本文中提出了跨模式检索(DS2L)的歧视性监督子空间学习,以充分利用判别信息并更好地保留语义上的结构信息。具体来说,我们首先构建一个共享的语义图,以保留每种模式中的语义结构。随后,引入了Hilbert-Schmidt独立标准(HSIC),以保留样品的特征相似性和语义相似性之间的一致性。第三,我们介绍了一个相似性保存项,因此我们的模型可以弥补使用判别性数据不足的缺点,并更好地保留每种模式中的语义结构信息。在三个众所周知的基准数据集上获得的实验结果证明了对经典子空间学习方法的提议方法的有效性和竞争力。

Nowadays the measure between heterogeneous data is still an open problem for cross-modal retrieval. The core of cross-modal retrieval is how to measure the similarity between different types of data. Many approaches have been developed to solve the problem. As one of the mainstream, approaches based on subspace learning pay attention to learning a common subspace where the similarity among multi-modal data can be measured directly. However, many of the existing approaches only focus on learning a latent subspace. They ignore the full use of discriminative information so that the semantically structural information is not well preserved. Therefore satisfactory results can not be achieved as expected. We in this paper propose a discriminative supervised subspace learning for cross-modal retrieval(DS2L), to make full use of discriminative information and better preserve the semantically structural information. Specifically, we first construct a shared semantic graph to preserve the semantic structure within each modality. Subsequently, the Hilbert-Schmidt Independence Criterion(HSIC) is introduced to preserve the consistence between feature-similarity and semantic-similarity of samples. Thirdly, we introduce a similarity preservation term, thus our model can compensate for the shortcomings of insufficient use of discriminative data and better preserve the semantically structural information within each modality. The experimental results obtained on three well-known benchmark datasets demonstrate the effectiveness and competitiveness of the proposed method against the compared classic subspace learning approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源