论文标题
电晕刚度
Corona Rigidity
论文作者
论文摘要
我们对其他集合理论公理对商结构的影响的研究进行了统一的概述。我们的重点是刚性,以相关商的适当非平凡的自动形态的存在(或不存在)来衡量。该主题研究的教科书示例是布尔代数$ \ mathcal {p}(\ m athbb {n})/\ text {fin} $,其行为是该调查围绕的模板:强迫AxiOMS强迫AxiOMS暗示其所有的自动态在含义上,几乎是$ n of the Mathistions $ n of the the the the the the the the the the the the the Orf floff flofe,几乎可以{连续性假设这种刚性失败,$ \ Mathcal {p}(\ Mathbb {n})/\ Text {fin} $承认许多非平凡的自动形态。我们考虑了这种现象的深远概括,并提出了各种各样的情况,在这些情况下,类似模式持续存在,主要集中在布尔代数,čech-stone剩余的剩余和$ \ mathrm {c}^\ ast $ -Algebras上。我们调查了该领域的艺术状况和未来的前景,讨论了主要的开放问题,并尽可能概述了证明的主要思想。
We give a unified overview of the study of the effects of additional set theoretic axioms on quotient structures. Our focus is on rigidity, measured in terms of existence (or rather non-existence) of suitably non-trivial automorphisms of the quotients in question. A textbook example for the study of this topic is the Boolean algebra $\mathcal{P}(\mathbb{N})/\text{Fin}$, whose behavior is the template around which this survey revolves: Forcing axioms imply that all of its automorphisms are trivial, in the sense that they are induced by almost permutations of $\mathbb{N}$, while under the Continuum Hypothesis this rigidity fails and $\mathcal{P}(\mathbb{N})/\text{Fin}$ admits uncountably many non-trivial automorphisms. We consider far-reaching generalisations of this phenomenon and present a wide variety of situations where analogous patterns persist, focusing mainly (but not exclusively) on the categories of Boolean algebras, Čech-Stone remainders, and $\mathrm{C}^\ast$-algebras. We survey the state of the art and the future prospects of this field, discussing the major open problems and outlining the main ideas of the proofs whenever possible.