论文标题
加权洛伦兹不变措施作为量子场理论调节器
Weighted Lorentz invariant measures as quantum field theory regulators
论文作者
论文摘要
在这项工作中,我们通过更一般的加权洛伦兹(Lorentz)的不变措施来开发量子场理论的重新制定,量子场的定义允许;这种方法为量子场理论的传统表述的长期问题提供了有限答案,即,对于有限距离的野外换向器的平滑分布,对于能量的有限距离,有限的真空期望值(不引用操作员的正常订购),以及对现场操作员的有限波动。我们的构建是基于对常规量子场理论声明的关键观点,而不是援引字符串理论启发框架,因为它们不是必需的。我们将表明,构建量子场理论的常规方案具有获得广义版本的必要成分,这些版本尊重洛伦兹对称性,使我们能够治愈一些困扰不同表述的差异,尤其是超violet差异。此外,目前的方案将使我们能够构建一个与其他配方进行比较的无限野外理论家族。最后,我们讨论了我们的配方对粒子物理命理学和宇宙常数问题的影响
In this work we develop a re-formulation of quantum field theory through the more general weighted Lorentz invariant measures that the definition of quantum fields allows; this approach provides finite answers for the long-live problems of the traditional formulations of quantum field theories, namely, smooth distributions for the field commutators that are finite a short distances, finite vacuum expectation values for the energy (without invoking normal ordering of operators), and finite fluctuations for the field operators. Our construction is based on a critical point of view on conventional quantum field theory statements, instead of invoking string theory inspired frameworks, since they are not necessary. We shall show that the conventional scheme for constructing quantum field theories has the necessary ingredients for obtaining generalized versions that, respecting the Lorentz symmetry, allows us to cure some of the divergences that plague the different formulations, particularly the ultra-violet divergences; additionally the present scheme will allows us to construct an infinite family of noncommutative field theories that are compared with other formulations. At the end, we discuss the impact of our formulation on particle physics numerology and on the cosmological constant problem