论文标题
估计功能 - 服务功能的能力
Estimating the Capacities of Function-as-a-Service Functions
论文作者
论文摘要
无服务器计算是一个云计算范式,它允许开发人员专注于业务逻辑,因为云服务提供商管理资源管理任务。无服务器应用程序遵循此模型,该模型将应用程序分解为一组精细的功能-As-a-Service(FAAS)函数。但是,在应用程序中,基础系统基础架构和FAA函数之间的依赖性的模糊性对估计FAA功能的性能提出了挑战。为了表征与用户相关的FAA功能的性能,我们将功能容量(FC)定义为该函数可以在不违反服务级别目标(SLO)的情况下提供的最大同时调用数量。 本文应对无服务器应用程序中每个FAA功能分别量化FC的挑战。通过打磨FAAS功能并构建其性能模型来解决这一挑战。为此,我们开发了FNCAPACITOR-端到端自动化功能容量估计工具。我们演示了工具在Google Cloud功能(GCF)和AWS Lambda上的功能。 FNCAPACITOR通过进行时间框架负载测试并使用统计学统计:线性,脊和多项式回归以及深神经网络(DNN)方法来估算不同部署配置(分配的内存和最大功能实例)上的FCS。我们对不同FAA函数的评估显示了相对准确的预测,对于两个云提供商,使用DNN的精度大于75%。
Serverless computing is a cloud computing paradigm that allows developers to focus exclusively on business logic as cloud service providers manage resource management tasks. Serverless applications follow this model, where the application is decomposed into a set of fine-grained Function-as-a-Service (FaaS) functions. However, the obscurities of the underlying system infrastructure and dependencies between FaaS functions within the application pose a challenge for estimating the performance of FaaS functions. To characterize the performance of a FaaS function that is relevant for the user, we define Function Capacity (FC) as the maximal number of concurrent invocations the function can serve in a time without violating the Service-Level Objective (SLO). The paper addresses the challenge of quantifying the FC individually for each FaaS function within a serverless application. This challenge is addressed by sandboxing a FaaS function and building its performance model. To this end, we develop FnCapacitor - an end-to-end automated Function Capacity estimation tool. We demonstrate the functioning of our tool on Google Cloud Functions (GCF) and AWS Lambda. FnCapacitor estimates the FCs on different deployment configurations (allocated memory & maximum function instances) by conducting time-framed load tests and building various models using statistical: linear, ridge, and polynomial regression, and Deep Neural Network (DNN) methods on the acquired performance data. Our evaluation of different FaaS functions shows relatively accurate predictions, with an accuracy greater than 75% using DNN for both cloud providers.