论文标题
部分可观测时空混沌系统的无模型预测
A chaotic lattice field theory in one dimension
论文作者
论文摘要
由Gutzwiller的半经典量化的动机,其中低维确定性动力学的不稳定周期轨道可作为混沌量子力学的WKB“骨架”,我们构建了无限型晶格层状质量质量质量质量质量质量质量的确定性骨架。在现场理论表述中,没有时间的演变,也没有“ Lyapunov Horizon”。晶格状态只有列举有助于理论的分区总和,这是系统确定性Euler-Lagrange方程的全球时空解决方案。 重新制定将“混乱理论”与标准的固态,现场理论和统计力学保持一致。在时空的,晶体学者的配方中,动力学系统理论的时间周期轨道被时期的$ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $。较小细胞对大细胞的双曲阴影可确保该理论的预测由最小的勇敢的细胞支配。 给定场理论的分区函数的形式取决于其时空对称的群体,即由其晶格离散化的空间组在其相互晶格上最好地研究。一维晶格离散化已经具有足够的兴趣,可以成为本文的重点。特别是,从时空场理论的角度来看,“时间” - 反转是纯粹的晶体学概念,一个反射点组,导致了一种新颖的,对称性的时间 - 时间可逆理论和相关的拓扑Zeta函数。
Motivated by Gutzwiller's semiclassical quantization, in which unstable periodic orbits of low-dimensional deterministic dynamics serve as a WKB `skeleton' for chaotic quantum mechanics, we construct the corresponding deterministic skeleton for infinite-dimensional lattice-discretized scalar field theories. In the field-theoretical formulation, there is no evolution in time, and there is no `Lyapunov horizon'; there is only an enumeration of lattice states that contribute to the theory's partition sum, each a global spatiotemporal solution of system's deterministic Euler-Lagrange equations. The reformulation aligns `chaos theory' with the standard solid state, field theory, and statistical mechanics. In a spatiotemporal, crystallographer formulation, the time-periodic orbits of dynamical systems theory are replaced by periodic $d$-dimensional Bravais cell tilings of spacetime, each weighted by the inverse of its instability, its Hill determinant. Hyperbolic shadowing of large cells by smaller ones ensures that the predictions of the theory are dominated by the smallest Bravais cells. The form of the partition function of a given field theory is determined by the group of its spatiotemporal symmetries, that is, by the space group of its lattice discretization, best studied on its reciprocal lattice. Already 1-dimensional lattice discretization is of sufficient interest to be the focus of this paper. In particular, from a spatiotemporal field theory perspective, `time'-reversal is a purely crystallographic notion, a reflection point group, leading to a novel, symmetry quotienting perspective of time-reversible theories and associated topological zeta functions.