论文标题
ADS--DS固定的旋转黑洞精确溶液在爱因斯坦 - 非线性电动力学
AdS--dS Stationary Rotating Black Hole Exact Solution within Einstein--Nonlinear Electrodynamics
论文作者
论文摘要
在本报告中,提出了带有宇宙常数的非线性电动力学理论的精确旋转带电的黑洞解决方案。这个黑洞配备了质量,旋转参数,电荷和磁性电荷,宇宙常数$λ$以及由于非线性电动力学而引起的三个参数:$β$与潜在的向量$a_μ$和$a_μ$和$ {}^{}^{\ star}p_μ$以及$ f_0 $ f_0 $ $ g_0 $ $ g_0 $ $ g_0 $ $ g_0 $ $ g_0 $ $ g_0 $相关。 lagrangian $ l(f(\,x^μ),g(\,x^μ))$。该解决方案是petrov type D的,其特征是Weyl Tensor eigenvalue $ψ_2$,无纹状体ricci tensor eigenvalue $ s =2φ_ {(11)} $和标量曲线曲率$ r $;它允许事件视野,表现出环奇异性并满足能量条件。它的麦克斯韦(Maxwell)限制是保姆 - 安特 - de保姆 - 凯尔 - 纽曼黑洞解决方案。
In this report the exact rotating charged black hole solution to the Einstein--nonlinear electrodynamics theory with a cosmological constant is presented. This black hole is equipped with mass, rotation parameter, electric and magnetic charges, cosmological constant $Λ$, and three parameters due to the nonlinear electrodynamics: $β$ is associated to the potential vectors $A_μ$ and ${}^{\star}P_μ$, and two constants, $F_0$ and $G_0$, due to the presence of the invariants $F$ and $G$ in the Lagrangian $L(F(\,x^μ),G(\,x^μ))$. This solution is of Petrov type D, characterized by the Weyl tensor eigenvalue $Ψ_2$, the traceless Ricci tensor eigenvalue $S=2Φ_{(11)}$, and the scalar curvature $R$; it allows for event horizons, exhibits a ring singularity and fulfils the energy conditions. Its Maxwell limit is the de Sitter-Anti--de Sitter--Kerr--Newman black hole solution.