论文标题

多标准和粗糙的波动:实证研究

Multiscaling and rough volatility: an empirical investigation

论文作者

Brandi, Giuseppe, Di Matteo, T.

论文摘要

定价衍生产品可以追溯到广受赞誉的黑色和学者模型。但是,已知这种建模方法无法复制一些财务风格化的事实,包括波动性的动力。因此,在数学金融界中,它出现了一种新的范式,称为粗糙的波动性建模,它代表了金融资产的波动性动力学,这是一个非常小的赫斯特指数的分数布朗尼运动,这确实会产生粗糙的路径。同时,价格序列已被证明是多标准的,其特征是不同的赫斯特缩放指数。本文评估了价格多标准和波动性粗糙度之间的相互作用,定义为波动过程的(低)HURST指数。特别是,我们通过使用文献中存在的一种领先的粗糙波动率模型,即粗糙的Bergomi模型,进行广泛的模拟实验。还进行了真实的数据分析,以测试粗糙的波动率模型是否再现相同的关系。我们发现,当使用赫斯特指数的低价值时,该模型能够重现价格时间序列的多标准功能,但无法重现真实数据所说的内容。确实,我们发现价格的多标准和波动过程的赫斯特指数之间的依赖性与我们在实际数据中发现的依赖性截然相反,即两者之间的负相互作用。

Pricing derivatives goes back to the acclaimed Black and Scholes model. However, such a modeling approach is known not to be able to reproduce some of the financial stylized facts, including the dynamics of volatility. In the mathematical finance community, it has therefore emerged a new paradigm, named rough volatility modeling, that represents the volatility dynamics of financial assets as a fractional Brownian motion with Hurst exponent very small, which indeed produces rough paths. At the same time, prices' time series have been shown to be multiscaling, characterized by different Hurst scaling exponents. This paper assesses the interplay, if present, between price multiscaling and volatility roughness, defined as the (low) Hurst exponent of the volatility process. In particular, we perform extensive simulation experiments by using one of the leading rough volatility models present in the literature, the rough Bergomi model. A real data analysis is also carried out in order to test if the rough volatility model reproduces the same relationship. We find that the model is able to reproduce multiscaling features of the prices' time series when a low value of the Hurst exponent is used but it fails to reproduce what the real data say. Indeed, we find that the dependency between prices' multiscaling and the Hurst exponent of the volatility process is diametrically opposite to what we find in real data, namely a negative interplay between the two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源