论文标题

City3D:空气传播点云的大型建筑物重建

City3D: Large-Scale Building Reconstruction from Airborne LiDAR Point Clouds

论文作者

Huang, Jin, Stoter, Jantien, Peters, Ravi, Nan, Liangliang

论文摘要

我们提出了一种全自动方法,用于从大规模机载点云中重建紧凑型3D建筑模型。空中激光点云中城市重建的主要挑战在于垂直墙通常缺失。基于这样的观察,即城市建筑通常由与地面垂直墙相连的平面屋顶组成,我们提出了一种直接从数据中推断垂直墙的方法。借助屋顶和墙壁的平面段,我们假设建筑物表面的面部面孔,并通过使用扩展的基于假设和选择的多边形表面重建框架获得了最终模型。具体来说,我们引入了一个新的能量术语,以鼓励屋顶偏好和两个其他硬约束,以确保正确的拓扑并增强细节恢复。在各种大规模机载激光点云上进行的实验表明,就重建精度和鲁棒性而言,该方法优于最新方法。此外,我们已经生成了一个新的数据集,其方法由20K现实世界建筑物的点云和3D模型组成。我们认为,该数据集可以刺激空气中激光点云的城市重建研究以及在城市应用中使用3D城市模型的研究。

We present a fully automatic approach for reconstructing compact 3D building models from large-scale airborne point clouds. A major challenge of urban reconstruction from airborne LiDAR point clouds lies in that the vertical walls are typically missing. Based on the observation that urban buildings typically consist of planar roofs connected with vertical walls to the ground, we propose an approach to infer the vertical walls directly from the data. With the planar segments of both roofs and walls, we hypothesize the faces of the building surface, and the final model is obtained by using an extended hypothesis-and-selection-based polygonal surface reconstruction framework. Specifically, we introduce a new energy term to encourage roof preferences and two additional hard constraints into the optimization step to ensure correct topology and enhance detail recovery. Experiments on various large-scale airborne LiDAR point clouds have demonstrated that the method is superior to the state-of-the-art methods in terms of reconstruction accuracy and robustness. In addition, we have generated a new dataset with our method consisting of the point clouds and 3D models of 20k real-world buildings. We believe this dataset can stimulate research in urban reconstruction from airborne LiDAR point clouds and the use of 3D city models in urban applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源