论文标题
在室温下有选择性强的耦合MOS $ _2 $激子与超材料
Selectively strong coupling MoS$_2$ excitons to a metamaterial at room temperature
论文作者
论文摘要
双曲线材料(HMM)附近的光发射器显示出一系列量子光学现象,从自发衰减率提高到强耦合。在这项研究中,我们整合了HMM近场区域的单层钼二硫化物(MOS $ _2 $)。 MOS $ _2 $单层具有A和B激子,它们在可见光谱的红色区域中排放。我们发现,与激子相比,B激子夫妇对hmm的态度不同。制造的HMM从椭圆形性介质中转换为2.13 eV的双曲线分散介质。 B激子与HMM模式的选择性耦合归因于过渡的内置场梯度。 B激子能量与激子相对于HMM的过渡点接近。因此,HMM模式将更多与B激子和超材料功能作为选择性耦合器。耦合强度计算表明,相对于激子的B激子的耦合强度更强。 HMM近距离近距离,大小和MOS $ _2 $激子的平面内过渡偶极矩,导致B激发量的强耦合和杂交轻质态的形成。测得的差异反射和光致发光光谱表明存在杂交光剂状态,即激子 - 波利顿。在室温下观察到至少129 MeV的狂犬病分裂。低温光致发光测量显示了抗骨骼模式,这是杂交状态的特征。我们的结果表明,HMM用作MOS $ _2 $的多极性系统的能量选择耦合器。
Light emitters in vicinity of a hyperbolic metamaterial (HMM) show a range of quantum optical phenomena from spontaneous decay rate enhancement to strong coupling. In this study, we integrate monolayer Molybdenum disulfide (MoS$_2$) emitter in near field region of HMM. The MoS$_2$ monolayer has A and B excitons, which emit in the red region of visible spectrum. We find that the B excitons couple to HMM differently compared to A excitons. The fabricated HMM transforms to a hyperbolic dispersive medium at 2.13 eV, from an elliptical dispersive medium. The selective coupling of B Excitons to the HMM modes is attributed to the inbuilt field gradient of the transition. The B exciton energy lies close to the transition point of the HMM, relative to A Exciton. So, the HMM modes couple more to the B excitons and the metamaterial functions as selective coupler. The coupling strength calculations show that coupling is 2.5 times stronger for B excitons relative to A excitons. High near field of HMM, large magnitude and the in-plane transition dipole moment of MoS$_2$ Excitons, result in strong coupling of B excitons and formation of hybrid light-matter states. The measured differential Reflection and Photoluminescence spectra indicate the presence of hybrid light-matter states i.e. Exciton-Polaritons. Rabi splitting of at least 129 meV at room temperature is observed. The low temperature Photoluminescence measurement shows mode anticrossing, which is characteristic feature of hybrid states. Our results show that the HMM works as a energy selective coupler for multi-excitonic systems as MoS$_2$.