论文标题

LP-uit:社交网络中链接预测的多模式框架

LP-UIT: A Multimodal Framework for Link Prediction in Social Networks

论文作者

Wu, Huizi, Wang, Shiyi, Fang, Hui

论文摘要

随着在线社交网站(SNS)上的快速信息爆炸,用户很难以有效的方式寻求新朋友或扩大其社交网络。链接预测可以有效地征服这个问题,因此引起了广泛的关注。链接预测的先前方法无法全面捕获导致新链接形成的因素:1)很少有模型考虑用户短期和长期利益对链接预测的影响。此外,他们无法共同模拟社会影响力和“弱环节”的影响。 2)考虑到应从不同方式的信息源得出不同的因素,因此缺乏有效的多模式框架来进行链接预测。在此观点中,我们为链接预测(称为LP-uit)提出了一个新颖的多模式框架,该框架融合了从多模式信息(即文本信息,图形信息,图形信息和数值信息)中提取的一组全面功能(即用户信息和拓扑特征)。具体来说,我们采用图形卷积网络来处理网络信息以捕获拓扑特征,采用自然语言处理技术(即TF-IDF和Word2Vec)来对用户的短期和长期利益进行建模,并从数字特征中确定社会影响力以及“弱点”。我们进一步使用注意机制来建模文本和拓扑特征之间的关系。最后,设计多层感知器(MLP)旨在将三种模式的表示形式结合起来以进行链接预测。在两个现实世界数据集上进行的广泛实验证明了LP-uit优于最先进的方法。

With the rapid information explosion on online social network sites (SNSs), it becomes difficult for users to seek new friends or broaden their social networks in an efficient way. Link prediction, which can effectively conquer this problem, has thus attracted wide attention. Previous methods on link prediction fail to comprehensively capture the factors leading to new link formation: 1) few models have considered the varied impacts of users' short-term and long-term interests on link prediction. Besides, they fail to jointly model the influence from social influence and "weak links"; 2) considering that different factors should be derived from information sources of different modalities, there is a lack of effective multi-modal framework for link prediction. In this view, we propose a novel multi-modal framework for link prediction (referred as LP-UIT) which fuses a comprehensive set of features (i.e., user information and topological features) extracted from multi-modal information (i.e., textual information, graph information, and numerical information). Specifically, we adopt graph convolutional network to process the network information to capture topological features, employ natural language processing techniques (i.e., TF-IDF and word2Vec) to model users' short-term and long-term interests, and identify social influence and "weak links" from numerical features. We further use an attention mechanism to model the relationship between textual and topological features. Finally, a multi-layer perceptron (MLP) is designed to combine the representations from three modalities for link prediction. Extensive experiments on two real-world datasets demonstrate the superiority of LP-UIT over the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源