论文标题
一般贝叶斯多元模型的空间网络
Spatial meshing for general Bayesian multivariate models
论文作者
论文摘要
在贝叶斯分层模型中,可以通过空间随机效应来实现不同类型的多元地理位置数据中的空间和/或时间关联,但是当在日益常见的大型数据设置中,在我们重点的越来越大的规模数据设置中,在我们重点的越来越大的大规模数据设置中将空间依赖编码为潜在的高斯进程(GP)时会出现严重的计算瓶颈。该方案在非高斯模型中恶化,因为降低的分析性障碍性会导致计算效率的额外障碍。在本文中,我们介绍了贝叶斯的模型的空间引用数据,其中可能性或潜在过程(或两者都不是高斯)。首先,我们利用通过定向的无环图构建的空间过程的优势,在这种情况下,空间节点进入贝叶斯层次结构,并通过常规马尔可夫链蒙特卡洛(MCMC)方法导致后验采样。其次,是基于流行的基于梯度的采样方法的效率低下的动力,在我们关注的多元上下文中,我们介绍了简化的流形的预处理适应器(SIMPA)算法,该算法使用有关目标的二阶信息,但避免了有关目标的二阶信息,但避免了昂贵的矩阵操作。我们在广泛的合成和现实世界遥感和社区生态学应用程序中,使用大规模数据和最高成果的大规模数据和最高成果的大规模数据来撤销方法相对于替代方案的性能和效率提高。提出的方法的软件是Cran上可用的r软件包“网状”软件包的一部分。
Quantifying spatial and/or temporal associations in multivariate geolocated data of different types is achievable via spatial random effects in a Bayesian hierarchical model, but severe computational bottlenecks arise when spatial dependence is encoded as a latent Gaussian process (GP) in the increasingly common large scale data settings on which we focus. The scenario worsens in non-Gaussian models because the reduced analytical tractability leads to additional hurdles to computational efficiency. In this article, we introduce Bayesian models of spatially referenced data in which the likelihood or the latent process (or both) are not Gaussian. First, we exploit the advantages of spatial processes built via directed acyclic graphs, in which case the spatial nodes enter the Bayesian hierarchy and lead to posterior sampling via routine Markov chain Monte Carlo (MCMC) methods. Second, motivated by the possible inefficiencies of popular gradient-based sampling approaches in the multivariate contexts on which we focus, we introduce the simplified manifold preconditioner adaptation (SiMPA) algorithm which uses second order information about the target but avoids expensive matrix operations. We demostrate the performance and efficiency improvements of our methods relative to alternatives in extensive synthetic and real world remote sensing and community ecology applications with large scale data at up to hundreds of thousands of spatial locations and up to tens of outcomes. Software for the proposed methods is part of R package 'meshed', available on CRAN.