论文标题

kolmogorov的敏锐形式 - 罗戈因不平等和领导者的猜想 - 拉德克利夫

The sharp form of the Kolmogorov--Rogozin inequality and a conjecture of Leader--Radcliffe

论文作者

Juškevičius, Tomas

论文摘要

令$ x $为一个随机变量,并通过$$ \ mathcal {q} _ {h}(x)= \ sup_ {x \ in \ mathbb {r}} \ mathbb {p}(x \ in(x,x+h])。变量Kolmogorov-Rogozin不平等指出$$ \ MATHCAL {q} _ {h}(s_n)\ leq c \ left(\ sum_ {i = 1}^{n}(1- \ mathcal {q} _ {h}(x_i))\ right)\ right)^{ - \ frac {1} {2} {2}}}} $$ 在本文中,我们给出了$ \ MATHCAL {q} _ {h}(s_n)$的最佳限制,以$ \ Mathcal {q} _ {h}(x_i)$来解决,该问题解决了一个由领导者和Radcliffe在1994年提出的问题。

Let $X$ be a random variable and define its concentration function by $$\mathcal{Q}_{h}(X)=\sup_{x\in \mathbb{R}}\mathbb{P}(X\in (x,x+h]).$$ For a sum $S_n=X_1+\cdots+X_n$ of independent real-valued random variables the Kolmogorov-Rogozin inequality states that $$\mathcal{Q}_{h}(S_n)\leq C\left(\sum_{i=1}^{n}(1-\mathcal{Q}_{h}(X_i))\right)^{-\frac{1}{2}}.$$ In this paper we give an optimal bound for $\mathcal{Q}_{h}(S_n)$ in terms of $\mathcal{Q}_{h}(X_i)$, which settles a question posed by Leader and Radcliffe in 1994. Moreover, we show that the extremal distributions are mixtures of two uniform distributions each lying on an arithmetic progression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源