论文标题
Cuntz代数压缩的parseval框架
Parseval Frames from Compressions of Cuntz Algebras
论文作者
论文摘要
一行的共同指标是一个家庭$(v_i)_ {i = 0}^{n-1} $在希尔伯特空间上的操作员,但要遵守关系$$ \ sum_ {i = 0}^{n-1}^{n-1} v_iv_i^*= I。$ $。代数。 在本文中,我们将为希尔伯特空间提供一些parseval框架的一般结构,并通过在有限的矢量集上迭代操作员$ v_i $获得。这些结构基于有限图上的随机步行。作为我们结构的应用,我们在间隔的自我措施措施和parseval Walsh基地上获得了parseval傅立叶基础。 \ end {摘要}
A row co-isometry is a family $(V_i)_{i=0}^{N-1}$ of operators on a Hilbert space, subject to the relation $$\sum_{i=0}^{N-1}V_iV_i^*=I.$$ As shown in \cite{BJK00}, row co-isometries appear as compressions of representations of Cuntz algebras. In this paper we will present some general constructions of Parseval frames for Hilbert spaces, obtained by iterating the operators $V_i$ on a finite set of vectors. The constructions are based on random walks on finite graphs. As applications of our constructions we obtain Parseval Fourier bases on self-affine measures and Parseval Walsh bases on the interval. \end{abstract}