论文标题

通过元强化学习的动态渠道访问

Dynamic Channel Access via Meta-Reinforcement Learning

论文作者

Lu, Ziyang, Gursoy, M. Cenk

论文摘要

在本文中,我们通过元强制学习在动态无线环境中解决了频道访问问题。 Spectrum是无线通信中稀缺的资源,尤其是随着网络中设备数量的急剧增加。最近,受深入增强学习(DRL)成功的启发,已经进行了广泛的研究,以通过DRL解决无线资源分配问题。但是,培训DRL算法通常需要从环境中为每个特定任务收集的大量数据,并且如果环境的差异很小,则训练有素的模型可能会失败。在这项工作中,为了应对这些挑战,我们提出了一个元元素框架,该框架结合了模型 - 静态元学习方法(MAML)。在拟议的框架中,我们训练一个共同的初始化,以实现相似的频道选择任务。从初始化中,我们表明,适应从同一分布中绘制的不同任务需要少量梯度下降。我们通过仿真结果证明了性能的改进。

In this paper, we address the channel access problem in a dynamic wireless environment via meta-reinforcement learning. Spectrum is a scarce resource in wireless communications, especially with the dramatic increase in the number of devices in networks. Recently, inspired by the success of deep reinforcement learning (DRL), extensive studies have been conducted in addressing wireless resource allocation problems via DRL. However, training DRL algorithms usually requires a massive amount of data collected from the environment for each specific task and the well-trained model may fail if there is a small variation in the environment. In this work, in order to address these challenges, we propose a meta-DRL framework that incorporates the method of Model-Agnostic Meta-Learning (MAML). In the proposed framework, we train a common initialization for similar channel selection tasks. From the initialization, we show that only a few gradient descents are required for adapting to different tasks drawn from the same distribution. We demonstrate the performance improvements via simulation results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源