论文标题
关于广告中标量的分区功能和阶段
On partition functions and phases of scalars in AdS
论文作者
论文摘要
我们研究了$ d = 1,2,3 $的热$ ads_ {d+1} $空间中标量场理论的阶段。该分析是针对有限的全球$ o(n)$对称性的理论进行的。对称性施加和对称阶段被确定为标量场和温度的质量方面的函数。在途中,我们还描述了一种用于计算Thermal $ ads_ {D+1} $的标量字段的单循环分区功能的方法,该方法可重现文献中已知的结果。该推导基于图像方法,并在欧几里得$ ads $上使用laplacian的本征函数。
We study the phases of scalar field theories in thermal $AdS_{d+1}$ spaces for $d=1,2,3$. The analysis is done for theories with global $O(N)$ symmetry for the finite as well as large $N$. The symmetry-preserving and symmetry-breaking phases are identified as a function of the mass-squared of the scalar field and temperature. On the way we also describe a method for computing one-loop partition function for scalar field on thermal $AdS_{d+1}$ for arbitrary $d$ that reproduces results known in the literature. The derivation is based on the method of images and uses the eigenfunctions of the Laplacian on Euclidean $AdS$.