论文标题

低秩高斯混合物的最佳估计和计算极限

Optimal Estimation and Computational Limit of Low-rank Gaussian Mixtures

论文作者

Lyu, Zhongyuan, Xia, Dong

论文摘要

结构矩阵变化的观测通常会在多层网络分析和大脑图像聚类等各个领域中出现。尽管已经对这种类型的数据进行了广泛的研究,并提供了富有成果的结果,但诸如其统计最佳和计算限制之类的基本问题在很大程度上尚未探索。在本文中,我们提出了一个低级高斯混合模型(LRMM),假设每个基质值观测值都有一个种植的低级结构。建立了用于估计基础低级别矩阵的最小下限,以实现整个样本量和信号强度。在信号强度的最小条件下,称为信息理论极限或统计限制,我们证明了最大似然估计量的最小值最佳性,通常在计算上是不可行的。如果信号比某个阈值(称为计算限制)更强,则我们根据光谱聚集设计了一个计算快速估计器,并证明其最小值最佳性。此外,当信号强度小于计算限制时,我们根据低级似然比框架提供证据,以声称没有多项式时间算法可以始终如一地恢复潜在的低率矩阵。我们的结果揭示了最小值错误率和统计到计算差距的多个相变。数值实验证实了我们的理论发现。我们进一步展示了我们在全球食品交易数据集上的光谱聚合方法的优点。

Structural matrix-variate observations routinely arise in diverse fields such as multi-layer network analysis and brain image clustering. While data of this type have been extensively investigated with fruitful outcomes being delivered, the fundamental questions like its statistical optimality and computational limit are largely under-explored. In this paper, we propose a low-rank Gaussian mixture model (LrMM) assuming each matrix-valued observation has a planted low-rank structure. Minimax lower bounds for estimating the underlying low-rank matrix are established allowing a whole range of sample sizes and signal strength. Under a minimal condition on signal strength, referred to as the information-theoretical limit or statistical limit, we prove the minimax optimality of a maximum likelihood estimator which, in general, is computationally infeasible. If the signal is stronger than a certain threshold, called the computational limit, we design a computationally fast estimator based on spectral aggregation and demonstrate its minimax optimality. Moreover, when the signal strength is smaller than the computational limit, we provide evidences based on the low-degree likelihood ratio framework to claim that no polynomial-time algorithm can consistently recover the underlying low-rank matrix. Our results reveal multiple phase transitions in the minimax error rates and the statistical-to-computational gap. Numerical experiments confirm our theoretical findings. We further showcase the merit of our spectral aggregation method on the worldwide food trading dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源