论文标题

$ SL_3({\ Mathbb Z})$的334-Triangle图$

The 334-Triangle Graph of $SL_3({\mathbb Z})$

论文作者

Egge, Eric S., Polley, Michaela A.

论文摘要

Long,Reid和Thistlewaite表明,在$ SL_3({\ Mathbb Z})中$Δ334$ Triangle grout产生的某些组很薄,而其他人的状态未知。在本文中,我们采用了一种新方法:对于每个组,我们引入了一个新图,该图捕获了该组中$Δ334$的表示信息。我们为各个组提供图形的示例,并为$ sl_3({\ Mathbb z}/2 {\ Mathbb z})$使用有关图的信息,以表明$ sl_3({\ Mathbb z})的图形数量最多为八个。通过生成$ sl_3({\ mathbb z})$的图表的一部分,我们显示其色数至少为四个;我们猜想它等于四个。

Long, Reid, and Thistlewaite have shown that some groups generated by representations of the $Δ334$ triangle group in $SL_3({\mathbb Z})$ are thin, while the status of others is unknown. In this paper we take a new approach: for each group we introduce a new graph that captures information about representations of $Δ334$ in the group. We provide examples of our graph for a variety of groups, and we use information about the graph for $SL_3({\mathbb Z}/2{\mathbb Z})$ to show that the chromatic number of the graph for $SL_3({\mathbb Z})$ is at most eight. By generating a portion of the graph for $SL_3({\mathbb Z})$ we show its chromatic number is at least four; we conjecture it is equal to four.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源