论文标题
无限距离的紧急弦,超对称性
Emergent strings at infinite distance with broken supersymmetry
论文作者
论文摘要
我们研究了弦理论中不稳定通量真空的家族的无限距离特性,超对称性破裂。为此,我们在模量空间中采用了广义的距离概念,并根据重新规范化组的流量为隧道级联的非扰动制度构建了全息描述。在一个限制中,我们恢复了Kaluza-Klein陈述的一个指数的轻塔,而在相反的限制中,我们发现了D1-branes的高旋转激发塔,意识到了新兴的弦线建议。特别是,全息描述包括一个自由扇区,其新兴的超符号对称性与超对称稳定性,CFT距离构想和S偶尔性产生了共鸣。我们计算标量顶点算子和单个轨道高旋转电流的异常尺寸,从重新归一化组的角度找到距离的指数抑制,而距离却不是通用的,但对于我们的设置而言是特定的。
We investigate the infinite-distance properties of families of unstable flux vacua in string theory with broken supersymmetry. To this end, we employ a generalized notion of distance in the moduli space and we build a holographic description for the non-perturbative regime of the tunneling cascade in terms of a renormalization group flow. In one limit we recover an exponentially light tower of Kaluza-Klein states, while in the opposite limit we find a tower of higher-spin excitations of D1-branes, realizing the emergent string proposal. In particular, the holographic description includes a free sector, whose emergent superconformal symmetry resonates with supersymmetric stability, the CFT distance conjecture and S-duality. We compute the anomalous dimensions of scalar vertex operators and single-trace higher-spin currents, finding an exponential suppression with the distance which is not generic from the renormalization group perspective, but appears specific to our settings.