论文标题
Sobolev空间中的涡流和分歧的梯度
Vortex and the Gradient of Divergence in Sobolev Spaces
论文作者
论文摘要
涡流操作员的属性和差异($ \ text {rot} $和$ \ nabla \ text {div} $)在空间$ \ mathbf {l} _2 _2(g)$中进行了研究\ Mathbf {C}(2K,M)(G)\ Equiv \ MathBf {A}^{2K}(G)(G)\ Oplus \ Mathbf {W}^M(G)$。 S.L. Sobolev研究了标量polyharmonic方程的边界价值问题$δ^m \,u =ρ$在空间中$ w_2^m(ω)$带有广义右侧,并为这些空间理论奠定了基础。它的构造具有矩阵类似物,这里有一些。 $ {w} _2^{(m)}(g)的类似物中的类别$ \ nathcal {a} $和$ \ m nathcal {b} $是space $ \ mathbf {a} a}^{a}^{2k} {2k}(g)$ and $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ mathbf { \ Mathbf {a}^{ - 2k}(g)$及其双空格$ \ Mathbf {w}^{ - m}(g)$。成对的空格形成了Sobolev空格的网,其元素是$ \ MathBf {C}(2k,m)(g)(g)\ equiv \ Mathbf {a}^{2k}^{2k}(g)\ oplus \ mathbf \ Mathbf {w}^m(g)^m(g)$;类$ \ mathbf {c}(2k,2k)$与sobolev space $ \ mathbf {h}^{2k}(g)$重合。它们属于$ \ Mathbf {l} _ {2}(g)$,如果$ k \ geq 0 $和$ m \ geq 0 $。广泛的问题已经开放:研究操作员$(\ mathrm {rot})^p $,$(\ nabla \,\ m mathrm {div})^p $ for $ p = 1,2,...,$和其他网络中的其他问题。
The properties of the vortex and the gradient of divergence operators ( $ \text{rot}$ and $\nabla \text{div}$ ) are studied in the space $ \mathbf {L}_2 (G) $ in a bounded domain $ G \subset \textrm {R}^3 $ with a smooth boundary $ Γ$ and in the Sobolev spaces: $ \mathbf{C}(2k, m)(G)\equiv \mathbf{A}^{2k}(G) \oplus \mathbf{W}^m(G)$. S.L. Sobolev studied boundary value problems for the scalar polyharmonic equation $Δ^m\,u=ρ$ in the spaces $W_2^m(Ω)$ with a generalized right-hand side and laid the foundation for the theory of these spaces. Its constructions have matrix analogs, here are some of them. Analogues of the spaces ${W}_2^{(m)}(G)$ in the classes $ \mathcal {A} $ and $ \mathcal {B} $ are the space $\mathbf{A}^{2k}(G)$ and $\mathbf{W}^m(G)$ of orders $ 2k> 0 $ and $ m> 0 $, and $ \mathbf {A}^{-2k} (G) $ and their dual spaces $ \mathbf{W}^{- m}(G) $. Pairs of spaces form a net of Sobolev spaces, its elements are classes $ \mathbf{C}(2k, m)(G)\equiv \mathbf{A}^{2k}(G) \oplus \mathbf{W}^m(G)$; the class $ \mathbf{C}(2k, 2k)$coincides with the Sobolev space $\mathbf{H}^{2k}(G)$. They belong to $\mathbf{L}_{2}(G)$, if $k\geq 0$ and $m\geq 0$. A wide field of problems has opened up: studying the operators $(\mathrm{rot})^p$, $ (\nabla \, \mathrm{div})^p$ for $ p = 1,2, ...,$ and others in the network Sobolev spaces.