论文标题

安全编码回归的正顺序草图

Orthonormal Sketches for Secure Coded Regression

论文作者

Charalambides, Neophytos, Mahdavifar, Hessam, Pilanci, Mert, Hero III, Alfred O.

论文摘要

在这项工作中,我们提出了一种在确保安全性的同时分配线性回归的方法。我们利用随机素描技术,并改善异步系统中的散曲弹性。具体来说,我们应用一个随机的正交矩阵,然后在\ textit {blocks}中使用子样本,以同时保护信息并减少回归问题的维度。在我们的设置中,转换对应于\ textIt {近似}梯度编码方案中的编码加密,并且子采样对应于非stragggling工人的响应。在集中的编码计算网络中。我们专注于\ textit {sibsmpred随机hadamard变换}的特殊情况,我们将其推广以阻止采样。并讨论如何使用它来保护数据。我们通过数值实验说明了性能。

In this work, we propose a method for speeding up linear regression distributively, while ensuring security. We leverage randomized sketching techniques, and improve straggler resilience in asynchronous systems. Specifically, we apply a random orthonormal matrix and then subsample in \textit{blocks}, to simultaneously secure the information and reduce the dimension of the regression problem. In our setup, the transformation corresponds to an encoded encryption in an \textit{approximate} gradient coding scheme, and the subsampling corresponds to the responses of the non-straggling workers; in a centralized coded computing network. We focus on the special case of the \textit{Subsampled Randomized Hadamard Transform}, which we generalize to block sampling; and discuss how it can be used to secure the data. We illustrate the performance through numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源