论文标题
通过协调的分支跳跃的FKPP方程的波速
The wave speed of an FKPP equation with jumps via coordinated branching
论文作者
论文摘要
我们考虑使用由泊松随机度量驱动的非线性选择的Fisher-KPP方程。我们证明该方程允许唯一的波速$ \ Mathfrak {s}> 0 $由$ \ frac {\ mathfrak {\ Mathfrak {s}^{2}}} {2} {2} = \ int _ {[0,1,1]} \ frac {\ frac {\ log {1 + y)}} y)$ $ \ mathfrak {r} $是驾驶噪声影响的强度。我们的论点是基于上限和下限,该二元性具有与布朗尼动作的协调系统。
We consider a Fisher-KPP equation with nonlinear selection driven by a Poisson random measure. We prove that the equation admits a unique wave speed $ \mathfrak{s}> 0 $ given by $\frac{\mathfrak{s}^{2}}{2} = \int_{[0, 1]}\frac{ \log{(1 + y)}}{y} \mathfrak{R}( \mathrm d y)$ where $ \mathfrak{R} $ is the intensity of the impacts of the driving noise. Our arguments are based on upper and lower bounds via a quenched duality with a coordinated system of branching Brownian motions.