论文标题
在$ \a_φ(g)$中的代数结构上
On the algebraic structures in $\A_Φ(G)$
论文作者
论文摘要
令$ g $为本地紧凑型组,$(φ,ψ)$为$ n $ functions的补充对。在本文中,使用强大的孔隙率工具,证明当$ g $是一个可正常的群体时,则figà-Talamanca-herz-orlicz-orlicz algebra $ {\ a}_φ(g)$是Banach代数卷积的卷积产品,并且仅在$ G $被压缩时才。然后证明$ {\ a}_φ(g)$是segal代数,结果,在卷积产品下,讨论了$ {\ a}_φ(g)$的$ {\ a}_φ(g)$,并且存在$ {\ a}_φ(g)$的有限近似身份。此外,可以证明,对于紧凑型Abelian $ g $,可以用$ \ wideHat {g} $确定$ {\ a}_φ(g)$的字符空间,$ g $。
Let $G$ be a locally compact group and $(Φ, Ψ)$ be a complementary pair of $N$-functions. In this paper, using the powerful tool of porosity, it is proved that when $G$ is an amenable group, then the Figà-Talamanca-Herz-Orlicz algebra ${\A}_Φ(G)$ is a Banach algebra under convolution product if and only if $G$ is compact. Then it is shown that ${\A}_Φ(G)$ is a Segal algebra, and as a consequence, the amenability of ${\A}_Φ(G)$ and the existence of a bounded approximate identity for ${\A}_Φ(G)$ under the convolution product is discussed. Furthermore, it is shown that for a compact abelian group $G$, the character space of ${\A}_Φ(G)$ under convolution product can be identified with $\widehat{G}$, the dual of $G$.