论文标题
基于机器学习的算法,用于关节改进功率控制,链路适应和5G沟通系统中的能力
A Machine Learning Based Algorithm for Joint Improvement of Power Control, link adaptation, and Capacity in Beyond 5G Communication systems
论文作者
论文摘要
在这项研究中,我们提出了一种基于机器学习的新型算法,以提高超出5世代(B5G)无线通信系统的性能,该算法是由正交频施加多重(OFDM)和非正交多重访问(NOMA)技术的帮助。非线性软边缘支持向量机(SVM)问题用于提供自动调制分类器(AMC)和信号功率与噪声和干扰比(SINR)估计器。 AMC和SINR的估计结果用于重新分配调制类型,代码速率和通过Enode B连接框架发射功率。 AMC的成功率与SINR,总功耗和总和容量对OFDM-NOMA辅助5G系统进行了评估。结果表明,与某些已发表方法相比,成功率的提高。此外,该算法通过连续的干扰取消(SIC)和任何信号解码检测到信号后直接计算SINR。此外,由于具有直接的物理通道感,呈现的算法可以打折网络通信信号中的通道质量信息(CQI)的被占用符号(顶部信号传导)。结果还证明,所提出的算法减少了总功耗,并通过eNODE B连接增加了总和容量。与其他算法相比,仿真结果显示出更成功的AMC,有效的SINR估计器,更容易的实用植入,较少的架空信号传导,更少的功耗和更多的容量实现。
In this study, we propose a novel machine learning based algorithm to improve the performance of beyond 5 generation (B5G) wireless communication system that is assisted by Orthogonal Frequency Division Multiplexing (OFDM) and Non-Orthogonal Multiple Access (NOMA) techniques. The non-linear soft margin support vector machine (SVM) problem is used to provide an automatic modulation classifier (AMC) and a signal power to noise and interference ratio (SINR) estimator. The estimation results of AMC and SINR are used to reassign the modulation type, codding rate, and transmit power through frames of eNode B connections. The AMC success rate versus SINR, total power consuming, and sum capacity are evaluated for OFDM-NOMA assisted 5G system. Results show improvement of success rate compared of some published method. Furthermore, the algorithm directly computes SINR after signal is detected by successive interference cancellation (SIC) and before any signal decoding. Moreover, because of the direct sense of physical channel, the presented algorithm can discount occupied symbols (overhead signaling) for channel quality information (CQI) in network communication signaling. The results also prove that the proposed algorithm reduces the total power consumption and increases the sum capacity through the eNode B connections. Simulation results in compare to other algorithms show more successful AMC, efficient SINR estimator, easier practical implantation, less overhead signaling, less power consumption, and more capacity achievement.