论文标题
使用时间依赖性碱基对瞬态仿真数据进行可扩展的原位压缩
Scalable In Situ Compression of Transient Simulation Data Using Time-Dependent Bases
论文作者
论文摘要
大规模的对时间依赖性问题的模拟产生了大量数据,并且随着计算资源的爆炸性增加,这些模拟产生的数据大小已大大增加。这对可以存储的数据量施加了严重的限制,并将输入/输出(I/O)的问题提高到了高性能计算的主要瓶颈之一。在这项工作中,我们提出了一种原位压缩技术,以减小数量级存储数据存储的大小。该方法基于时间依赖性子空间,它通过将数据分解为一组时间依赖性碱基和核心张量来从多维流数据数据中提取低级结构。我们得出了核心张量以及时间依赖性碱基的封闭形式的演化方程。提出的方法不需要数据历史记录和提取的计算成本与数据大小线性缩放 - 使其适用于大规模流数据集。为了控制压缩误差,我们提出了一种自适应策略,以添加/删除模式以将重建误差保持在给定阈值以下。我们提出了四种示范案例:(i)分析示例,(ii)不稳定的不稳定反应流动,(iii)随机湍流反应流动和(iv)三维湍流通道流动。
Large-scale simulations of time-dependent problems generate a massive amount of data and with the explosive increase in computational resources the size of the data generated by these simulations has increased significantly. This has imposed severe limitations on the amount of data that can be stored and has elevated the issue of input/output (I/O) into one of the major bottlenecks of high-performance computing. In this work, we present an in situ compression technique to reduce the size of the data storage by orders of magnitude. This methodology is based on time-dependent subspaces and it extracts low-rank structures from multidimensional streaming data by decomposing the data into a set of time-dependent bases and a core tensor. We derive closed-form evolution equations for the core tensor as well as the time-dependent bases. The presented methodology does not require the data history and the computational cost of its extractions scales linearly with the size of data -- making it suitable for large-scale streaming datasets. To control the compression error, we present an adaptive strategy to add/remove modes to maintain the reconstruction error below a given threshold. We present four demonstration cases: (i) analytical example, (ii) incompressible unsteady reactive flow, (iii) stochastic turbulent reactive flow, and (iv) three-dimensional turbulent channel flow.