论文标题

上下文感知场景预测网络(CASPNET)

Context-Aware Scene Prediction Network (CASPNet)

论文作者

Schäfer, Maximilian, Zhao, Kun, Bühren, Markus, Kummert, Anton

论文摘要

预测周围道路使用者的未来运动是自动驾驶(AD)和各种高级驾驶员辅助系统(ADA)的至关重要且具有挑战性的任务。规划安全的未来轨迹在很大程度上取决于了解交通现场并预期其动态。这些挑战不仅在于了解复杂的驾驶场景,而且还在于道路使用者和环境之间的众多可能的相互作用,这实际上对于明确的建模而言是不可行的。在这项工作中,我们使用基于新型的卷积神经网络(CNN)和基于重复的神经网络(RNN)体系结构共同学习和预测场景中所有道路使用者的运动来应对上述挑战。此外,通过利用基于网格的输入和输出数据结构,计算成本独立于道路用户的数量,多模式预测成为我们提出的方法的固有属性。对Nuscenes数据集的评估表明,我们的方法达到了预测基准的最先进结果。

Predicting the future motion of surrounding road users is a crucial and challenging task for autonomous driving (AD) and various advanced driver-assistance systems (ADAS). Planning a safe future trajectory heavily depends on understanding the traffic scene and anticipating its dynamics. The challenges do not only lie in understanding the complex driving scenarios but also the numerous possible interactions among road users and environments, which are practically not feasible for explicit modeling. In this work, we tackle the above challenges by jointly learning and predicting the motion of all road users in a scene, using a novel convolutional neural network (CNN) and recurrent neural network (RNN) based architecture. Moreover, by exploiting grid-based input and output data structures, the computational cost is independent of the number of road users and multi-modal predictions become inherent properties of our proposed method. Evaluation on the nuScenes dataset shows that our approach reaches state-of-the-art results in the prediction benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源