论文标题
贝叶斯校准动脉风能模型
Bayesian calibration of Arterial Windkessel Model
论文作者
论文摘要
这项工作是由个性化的数字双胞胎基于观察和预防高血压的物理模型来激发的。通常使用的模型是简化实际过程,目的是推论物理上可解释的参数。为了考虑模型差异,我们建议在贝叶斯校准框架中设置估计问题。在参数估计和预测中,这自然解决了对模型公式中的不确定性的逆问题。我们专注于反问题,即估计观察结果的物理参数。我们考虑的模型是两个和三个参数Windkessel模型(WK2和WK3)。考虑到血压流入和一组物理解释的校准参数,这些模型模拟了血压波形。 WK3中的第三个参数可作为调谐参数。 WK2模型提供了物理可解释的参数,因此我们将其作为贝叶斯校准公式中的计算机模型选择。在一项合成模拟研究中,我们模拟了来自WK3模型的嘈杂数据。我们使用常规方法,即最小二乘优化和通过贝叶斯校准框架来估计模型参数。证明我们的公式可以重建复杂模型的血压波形,但最重要的是,可以根据两个模型之间的已知数学连接来学习参数。我们还成功地将此公式应用于真实案例研究,在该研究中,数据是从一项随机对照试验研究中获得的。我们的方法对于模拟研究和实际情况都成功。
This work is motivated by personalized digital twins based on observations and physical models for treatment and prevention of Hypertension. The models commonly used are simplification of the real process and the aim is to make inference about physically interpretable parameters. To account for model discrepancy we propose to set up the estimation problem in a Bayesian calibration framework. This naturally solves the inverse problem accounting for and quantifying the uncertainty in the model formulation, in the parameter estimates and predictions. We focus on the inverse problem, i.e. to estimate the physical parameters given observations. The models we consider are the two and three parameters Windkessel models (WK2 and WK3). These models simulate the blood pressure waveform given the blood inflow and a set of physically interpretable calibration parameters. The third parameter in WK3 function as a tuning parameter. The WK2 model offers physical interpretable parameters and therefore we adopt it as a computer model choice in a Bayesian calibration formulation. In a synthetic simulation study, we simulate noisy data from the WK3 model. We estimate the model parameters using conventional methods, i.e. least squares optimization and through the Bayesian calibration framework. It is demonstrated that our formulation can reconstruct the blood pressure waveform of the complex model, but most importantly can learn the parameters according to known mathematical connections between the two models. We also successfully apply this formulation to a real case study, where data was obtained from a pilot randomized controlled trial study. Our approach is successful for both the simulation study and the real cases.