论文标题

经常以项目集驱动的搜索在复杂网络中查找最小节点分离器

Frequent Itemset-driven Search for Finding Minimum Node Separators in Complex Networks

论文作者

Zhou, Yangming, Zhang, Xiaze, Geng, Na, Jiang, Zhibin, Zhou, Mengchu

论文摘要

在复杂的网络中找到一组最佳的关键节点已经是人工智能和操作研究领域的长期问题。潜在的应用包括流行病控制,网络安全,碳排放监测,出现响应,药物设计和脆弱性评估。在这项工作中,我们考虑找到一个最小节点分离器的问题,其去除将图形分为多个不同的连接组件,每个组件中的顶点少于有限数量。为了解决它,我们提出了一种频繁的项目集驱动的搜索方法,该方法将数据挖掘中频繁的项目集挖掘的概念集成到了众所周知的模因搜索框架中。从解决方案构建和人口维修程序构建的高质量人群开始,它迭代采用了频繁的项目集重组操作员(以基于在高质量解决方案中经常发生的项目集生成有希望的后代解决方案),基于禁忌搜索的模拟模拟退火(以寻找高质量的本地最佳优点),高质量的当地最佳维修程序,以确定人口的人口(人口健康)和基于人群的策略(以改进基于人口的策略),以改善基于人口的策略(以更改基于人群),以便基于人口的策略(以更高级别的人口管理)(以便基于人口),以便基于人口的策略(以更高级别的人口管理策略)(以更高级别的人口管理策略)(以便基于人口)和级别。对50个广泛使用的基准实例进行了广泛的评估表明,它的表现明显优于最先进的算法。特别是,它发现了29个新的上限,并匹配了18个以前最著名的边界。最后,进行实验分析以确认所提出方法的关键算法模块的有效性。

Finding an optimal set of critical nodes in a complex network has been a long-standing problem in the fields of both artificial intelligence and operations research. Potential applications include epidemic control, network security, carbon emission monitoring, emergence response, drug design, and vulnerability assessment. In this work, we consider the problem of finding a minimal node separator whose removal separates a graph into multiple different connected components with fewer than a limited number of vertices in each component. To solve it, we propose a frequent itemset-driven search approach, which integrates the concept of frequent itemset mining in data mining into the well-known memetic search framework. Starting from a high-quality population built by the solution construction and population repair procedures, it iteratively employs the frequent itemset recombination operator (to generate promising offspring solution based on itemsets that frequently occur in high-quality solutions), tabu search-based simulated annealing (to find high-quality local optima), population repair procedure (to modify the population), and rank-based population management strategy (to guarantee a healthy population). Extensive evaluations on 50 widely used benchmark instances show that it significantly outperforms state-of-the-art algorithms. In particular, it discovers 29 new upper bounds and matches 18 previous best-known bounds. Finally, experimental analyses are performed to confirm the effectiveness of key algorithmic modules of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源